Introduction to Abstract Mathematics
Assignment 4.1 FALL 2018

Exercise 1. Let $a, b \in \mathbb{R}^{+}$.
a. Prove that $a<b$ if and only if $a^{2}<b^{2}$.
b. Prove that $a<b$ if and only if $\sqrt{a}<\sqrt{b}$.
c. If $a \neq b$, prove the Arithmetic Mean-Geometric Mean Inequality

$$
\sqrt{a b}<\frac{a+b}{2}
$$

Exercise 2. Let $n \in \mathbb{Z}$. Prove that exactly one of $n, n+1$ is even.

Exercise 3. Suppose that $x, y \in \mathbb{R}$. Prove that if $x^{2} y=2 x+y$, then $y \neq 0$ implies $x \neq 0$. [Suggestion: First show that $P \Rightarrow(Q \Rightarrow R) \cong(P \wedge Q) \Rightarrow R$.]

Exercise 4. Suppose that $x, y \in \mathbb{R}$, that $x+y=2 y-x$, and that x and y are not both zero. Prove that $y \neq 0$.

