

INTRODUCTION TO ABSTRACT MATHEMATICS FALL 2018

Assignment 4.2 Due September 19

Exercise 1. Let $a, b, c, x, y \in \mathbb{Z}$. Prove that if c|a and c|b, then c|ax + by.

Exercise 2. Let $a, b \in \mathbb{Z}$, not both zero. The greatest common divisor of a and b, denoted gcd(a, b), is the largest $c \in \mathbb{N}$ so that c|a and c|b.

- **a.** Explain why gcd(a, b) exists.
- **b.** Prove that gcd(a, b) = gcd(a, a+b) = gcd(a+b, b). [Suggestion: Show that the common (positive) divisors of a and b are the same as those of a and a + b.]

Exercise 3. Prove that the equation $x^2 = 4y + 2$ has no integer solutions.

Exercise 4. Let $a \in \mathbb{N}$, a > 1. Suppose that a has the following property: if $b, c \in \mathbb{N}$ and a|bc, then a|b or a|c. Prove that a is prime.¹

¹The converse is also true, although it's substantially harder to prove.