Introduction to Abstract Mathematics
AsSIGNMENT 4.2
FALL 2018

Exercise 1. Let $a, b, c, x, y \in \mathbb{Z}$. Prove that if $c \mid a$ and $c \mid b$, then $c \mid a x+b y$.

Exercise 2. Let $a, b \in \mathbb{Z}$, not both zero. The greatest common divisor of a and b, denoted $\operatorname{gcd}(a, b)$, is the largest $c \in \mathbb{N}$ so that $c \mid a$ and $c \mid b$.
a. Explain why $\operatorname{gcd}(a, b)$ exists.
b. Prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, a+b)=\operatorname{gcd}(a+b, b)$. [Suggestion: Show that the common (positive) divisors of a and b are the same as those of a and $a+b$.]

Exercise 3. Prove that the equation $x^{2}=4 y+2$ has no integer solutions.

Exercise 4. Let $a \in \mathbb{N}, a>1$. Suppose that a has the following property: if $b, c \in \mathbb{N}$ and $a \mid b c$, then $a \mid b$ or $a \mid c$. Prove that a is prime. ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ The converse is also true, although it's substantially harder to prove.

