

Introduction to Abstract Mathematics
AsSignMENT 4.3
FALL 2018

Exercise 1. Prove that $(x-1)^{2} \leq x+1$ for all real numbers $x \in[0,3]$.

Exercise 2. Prove that $n!\geq 2^{n}$ for every integer $n \geq 4$.

Exercise 3. A real-valued function f of one variable is called convex if

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

for all real numbers x, y and all t with $0 \leq t \leq 1$. Prove that $f(x)=x^{2}$ is convex.

Exercise 4. Let $f(n)=n^{2}+n+41$.
a. Show that $f(1), f(2), \ldots, f(10)$ are prime.
b. Prove or disprove: $f(n)$ is prime for all $n \in \mathbb{N}$.

