Introduction to Abstract Mathematics FALL 2018

AsSIGNMENT 5.1 Due September $\dot{2} 6$

Exercise 1. Let $f=x^{4}-2 x^{2}+5$.
a. Find the four roots of f.
b. Use part a to write f as the product of two quadratic polynomials with real coefficients.

Exercise 2. Prove that there exists a real number y so that the equation $z^{2}+5 z=x$ has a (real) solution for all (real) $x>y$.

Exercise 3. Let $n \in \mathbb{Z}$.
a. Prove that $n(n+1)(2 n+1)$ is divisible by 6 . [Suggestion: Consider the possible remainders when n is divided by 6.]
b. If n is odd, prove that $n^{2}-1$ is divisible by 8 . [Suggestion: Consider the possible remainders when n is divided by 8.]
c. Prove that if n is simultaneously a square and a cube (e.g. $64=8^{2}=4^{3}$), then either n or $n-1$ is divisible by 7. [Suggestion: Consider the possible remainders after division by 7.]

Exercise 4. Let $n \in \mathbb{N}, n \geq 2$. Given $a \in \mathbb{Z}$, let $r(a)$ denote the remainder when a is divided by n. Prove that $r(a \cdot r(b c))=r(r(a b) \cdot c)$ for all $a, b, c \in \mathbb{Z}$. [Suggestion: Compute the remainder when $a b c$ is divided by n in two different ways.]

