

Introduction to Abstract Mathematics Fall 2018

Assignment 5.1 Due September 26

Exercise 1. Prove that $\{2a + 3b \mid a, b \in \mathbb{N}_0\} = \{n \in \mathbb{N}_0 \mid n \neq 1\}$. [Suggestion: To prove \supset , first show that 0, 2, 3, 4 all have the form 2a + 3b. Then consider what happens as you add multiples of 3 to these.]

Exercise 2. Prove that $\{x \in S | P(x)\} = \{x \in S | Q(x)\}$ if and only if $(\forall x \in S)(P(x) \Leftrightarrow Q(x))$ is true.

Exercise 3. Let S be a set and suppose that to each $x \in S$ we assign a subset $Y(x) \subset S$. Let

$$Z = \{ x \in S \, | \, x \notin Y(x) \}.$$

Show that $Z \neq Y(x)$ for any $x \in S$. [Suggestion: Argue by contradiction. If Z = Y(x) for some $x \in S$, then $x \in Z$ or $x \notin Z$. Use the membership criterion for Z to show that both situations are untenable.]