

Introduction to Abstract Mathematics FALL 2018

Assignment 5.1 Due September $2 \dot{6}$

Exercise 1. Prove that $\left\{2 a+3 b \mid a, b \in \mathbb{N}_{0}\right\}=\left\{n \in \mathbb{N}_{0} \mid n \neq 1\right\}$. [Suggestion: To prove \supset, first show that $0,2,3,4$ all have the form $2 a+3 b$. Then consider what happens as you add multiples of 3 to these.]

Exercise 2. Prove that $\{x \in S \mid P(x)\}=\{x \in S \mid Q(x)\}$ if and only if $(\forall x \in S)(P(x) \Leftrightarrow$ $Q(x))$ is true.

Exercise 3. Let S be a set and suppose that to each $x \in S$ we assign a subset $Y(x) \subset S$. Let

$$
Z=\{x \in S \mid x \notin Y(x)\} .
$$

Show that $Z \neq Y(x)$ for any $x \in S$. [Suggestion: Argue by contradiction. If $Z=Y(x)$ for some $x \in S$, then $x \in Z$ or $x \notin Z$. Use the membership criterion for Z to show that both situations are untenable.]

