Introduction to Abstract Mathematics
Assignment 5.3
FALL 2018

Exercise 1. Let A, B and C be sets. Prove the following identities.
a. $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ and $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
b. $(A \backslash B) \cap C=(A \cap C) \backslash B$ and $(A \backslash B) \cup C=(A \cup C) \backslash(B \backslash C)$
c. $(A \backslash B) \backslash C=(A \backslash C) \backslash B$ and $A \backslash(B \backslash C)=(A \backslash B) \cup(A \cap C)$.

Exercise 2. The symmetric difference of two sets A and B is defined to be

$$
A \Delta B=(A \backslash B) \cup(B \backslash A)
$$

Verify the following properties of the symmetric difference.
a. $A \Delta B=B \Delta A$.
b. $A \Delta B=(A \cup B) \backslash(A \cap B)$.
c. $A \Delta B=A \cup B$ if and only if $A \cap B=\varnothing$.

Exercise 3. Let A, B, C be sets.
a. Show that

$$
(A \Delta B) \Delta C=[(A \cup B \cup C) \backslash((A \cap B) \cup(A \cap C) \cup(B \cap C))] \cup(A \cap B \cap C) .
$$

b. Use part a to conclude that $(A \Delta B) \Delta C=(B \Delta C) \Delta A$.
c. Use the commutativity of Δ and part \mathbf{b} to show that $(A \Delta B) \Delta C=A \Delta(B \Delta C)$.

