P

Introduction to Abstract Mathematics Fall 2018

Assignment 5.3 Due September 26

Exercise 1. Let A, B and C be sets. Prove the following identities.

a.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 and $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
b. $(A \setminus B) \cap C = (A \cap C) \setminus B$ and $(A \setminus B) \cup C = (A \cup C) \setminus (B \setminus C)$
c. $(A \setminus B) \setminus C = (A \setminus C) \setminus B$ and $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$.

Exercise 2. The symmetric difference of two sets A and B is defined to be

$$A\Delta B = (A \setminus B) \cup (B \setminus A).$$

Verify the following properties of the symmetric difference.

- **a.** $A\Delta B = B\Delta A$.
- **b.** $A\Delta B = (A \cup B) \setminus (A \cap B)$.
- **c.** $A\Delta B = A \cup B$ if and only if $A \cap B = \emptyset$.

Exercise 3. Let A, B, C be sets.

a. Show that

 $(A\Delta B)\Delta C = [(A \cup B \cup C) \setminus ((A \cap B) \cup (A \cap C) \cup (B \cap C))] \cup (A \cap B \cap C).$

- **b.** Use part **a** to conclude that $(A\Delta B)\Delta C = (B\Delta C)\Delta A$.
- **c.** Use the commutativity of Δ and part **b** to show that $(A\Delta B)\Delta C = A\Delta(B\Delta C)$.