Introduction to Abstract Mathematics
Assignment 7 FALL 2018

Exercise 1.

a. Prove that the cube of any integer is within 1 of a multiple of 9 .
b. Prove that the fourth power of any integer is either a multiple of 5 or 1 more than a multiple of 5 .

Exercise 2. Let $a, b, c \in \mathbb{Z}$, with a and b not both zero. Prove that if $c \mid a$ and $c \mid b$, then $c \mid \operatorname{gcd}(a, b)$. [Suggestion: Use Bézout's Lemma.]
Remark. If we let $S=\{c \in \mathbb{N}|c| a$ and $c \mid b\}$, then the result of this exercise can be used to show that

$$
\operatorname{gcd}(a, b)=\max S=\operatorname{lcm} S
$$

This is worth noting since although it's immediate that $c \leq \operatorname{lcm} S$ for all $c \in S$, it's not clear that $\operatorname{lcm} S \in S$.

Exercise 3. Let $a, b, k \in \mathbb{Z}$ with a and b not both zero and $k>0$. Prove that $\operatorname{gcd}(k a, k b)=$ $k \operatorname{gcd}(a, b)$. [Suggestion: Use Bézout's Lemma to show that the LHS and RHS divide one another.

Remark. This can be used to prove that if $d=\operatorname{gcd}(a, b), a=d a^{\prime}$ and $b=d b^{\prime}$, then $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$, which is equivalent to the statement that it's always possible to write a fraction in "lowest terms."

Exercise 4. Let $a, b \in \mathbb{Z}$ be nonzero and let $S=\{c \in \mathbb{N}|a| c$ and $b \mid c\}$, the set of positive common multiples of a and b. Use the Well-Ordering Principle to show that S has a least element, m, and the Division Algorithm to show that m divides every element of S. The integer m is called the least common multiple of a and b.

