

Introduction to Abstract Mathematics

Exercise 1. Let A and B be sets. Prove that $A \subset B$ if and only if $\mathcal{P}(A) \subset \mathcal{P}(B)$.

Exercise 2. Let S be a set and $\mathcal{F} \subset \mathcal{P}(S)$. Prove the following.
a. For any $X \in \mathcal{P}(S), X \subset \bigcap_{A \in \mathcal{F}} A$ if and only $X \subset A$ for all $A \in \mathcal{F}$. [Suggestions: Use a result we proved in class to prove the forward implication. Use another result from class and negation to prove the converse.]
b. Use part a to prove that

$$
\bigcap_{A \in \mathcal{F}} \mathcal{P}(A)=\mathcal{P}\left(\bigcap_{A \in \mathcal{F}} A\right)
$$

Exercise 3. Let S be a set and $\mathcal{F} \subset \mathcal{P}(S)$.
a. Prove that

$$
\bigcup_{A \in \mathcal{F}} \mathcal{P}(A) \subset \mathcal{P}\left(\bigcup_{A \in \mathcal{F}} A\right)
$$

Note that this implies $A^{\prime} \subset \bigcup_{A \in \mathcal{F}} A$ for any $A^{\prime} \in \mathcal{F}$ (why?).
b. Show that equality occurs in part a if and only if there is a $A^{\prime} \in \mathcal{F}$ so that $\mathcal{F} \subset \mathcal{P}\left(A^{\prime}\right)$.
[Suggestion: Note that if we have equality, then $\bigcup_{A \in \mathcal{F}} A \in \bigcup_{A \in \mathcal{F}} \mathcal{P}(A)$.]

