

Introduction to Abstract Mathematics
Assignment 8.2 FALL 2018

Exercise 1. Let $f: X \rightarrow Y$ be a function. Given $x \in X$, recall that we defined $f(x)$ to be the unique element of Y so that $(x, f(x)) \in f$ (so that $(x, y) \in f$ if and only if $y=f(x)$). If $g: X \rightarrow Y$ is also a function, prove that $f=g$ (which is an equality of sets) if and only if $f(x)=g(x)$ for all $x \in X$ (which is how we usually think of function equality).

Exercise 2. Let $f=\{(x, n) \in \mathbb{R} \times \mathbb{Z} \mid n \leq x<n+1\}$. Explain why f is a function from \mathbb{R} to \mathbb{Z}. What is $f(\pi)$? What is $f(-\pi)$? Is f one-to-one? Onto?

Exercise 3. Define $f: \mathbb{R} \backslash\{-1\} \rightarrow \mathbb{R}$ by $f(x)=2 x /(x+1)$. Prove that f is one-to-one but not onto. Is it possible to modify the codomain so that the same formula yields a bijection? Prove your answer.

Exercise 4. Let $A=\mathbb{R} \backslash\{1\}$ and define $f: A \rightarrow A$ by $f(x)=(x+1) /(x-1)$. Prove that f is a bijection.

Exercise 5. Let S be a set, $Y=\mathcal{P}(S)$ and $X=\mathcal{P}(Y)$. Define $f: X \rightarrow Y$ by

$$
f(\mathcal{F})=\bigcup_{A \in \mathcal{F}} A
$$

Is f one-to-one? Onto?

