

Introduction to Abstract Mathematics FALL 2018

Assignment 9.1 Due October 31

Exercise 1. Let $a, b \in \mathbb{R}$. Suppose that $b>0$ and that $a \neq 0$. Prove that the polynomial $x^{2}+a x-b$ has two distinct real roots and that exactly one of them lies in the interval $(-\sqrt{b}, \sqrt{b})$. [Suggestion: First show that if α and β are the roots of $x^{2}+a x-b$, then $\alpha+\beta=-a$ and $\alpha \beta=-b$.]

Exercise 2. Let $f: X \rightarrow Y, g: Y \rightarrow Z$ and $h: Z \rightarrow W$ be functions. Prove that function composition is associative, i.e. that $h \circ(g \circ f)=(h \circ g) \circ f$. [Suggestion: Use the fact, proven in an earlier assignment, that $f=g$ if and only if $f(x)=g(x)$ for all $x \in X$.]

Exercise 3. Let S be a set. Prove that if $f: S \rightarrow \mathcal{P}(S)$ is any function, then f is not surjective. [Suggestion: See Exercise 3 in Assignment 5.2.]

