

Introduction to Abstract Mathematics Fall 2018

Assignment 9.1 Due October 31

Exercise 1. Let $a, b \in \mathbb{R}$. Suppose that b > 0 and that $a \neq 0$. Prove that the polynomial $x^2 + ax - b$ has two distinct real roots and that exactly one of them lies in the interval $(-\sqrt{b}, \sqrt{b})$. [Suggestion: First show that if α and β are the roots of $x^2 + ax - b$, then $\alpha + \beta = -a$ and $\alpha\beta = -b$.]

Exercise 2. Let $f: X \to Y$, $g: Y \to Z$ and $h: Z \to W$ be functions. Prove that function composition is associative, i.e. that $h \circ (g \circ f) = (h \circ g) \circ f$. [Suggestion: Use the fact, proven in an earlier assignment, that f = g if and only if f(x) = g(x) for all $x \in X$.]

Exercise 3. Let S be a set. Prove that if $f : S \to \mathcal{P}(S)$ is any function, then f is not surjective. [Suggestion: See Exercise 3 in Assignment 5.2.]