

Introduction to Abstract Mathematics
Assignment 9.2 FALL 2018

Due October 31

Exercise 1. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions. Prove the following.
a. If f and g are injective, then so is $g \circ f$.
b. If f and g are surjective, then so is $g \circ f$.
c. If f and g are bijective, then so is $g \circ f$.

Exercise 2. We have seen that if $f: X \rightarrow Y$ is a bijection, then $f^{-1}=\{(f(x), x) \mid x \in X\}$ is also a function from Y to X. Prove that $f \circ f^{-1}=1_{Y}$ and $f^{-1} \circ f=1_{X}$.

Exercise 3. Let $f: X \rightarrow Y$ be a function. Prove that f is injective if and only if there is a function $g: Y \rightarrow X$ so that $g \circ f=1_{X}$.

Exercise 4. Recall that a set S is finite if there exists an $n \in \mathbb{N}$ and a bijection $f: I_{n} \rightarrow S$ (where $I_{n}=\{i \in \mathbb{N} \mid i \leq n\}$).
a. We say S is infinite if it is not finite. Negate the definition of finite to obtain a positive definition of infinite.
b. If $n \in \mathbb{N}$ and $f: I_{n} \rightarrow \mathbb{N}$ is any function, show that $N=1+\sum_{i=1}^{n} f(i)$ is a natural number not in the image of f.
c. Use parts a and \mathbf{b} to prove that \mathbb{N} is infinite.

