

Putnam Seminar Fall 2019 Quiz 0

Name:\_\_\_\_\_

Problem 1. Find the minimum value of

$$\frac{(x+1/x)^6 - (x^6+1/x^6) - 2}{(x+1/x)^3 + (x^3+1/x^3)}$$

for x > 0.

**Problem 2.** Evaluate  $\sum_{n=0}^{\infty} \operatorname{Arccot}(n^2 + n + 1)$ , where  $\operatorname{Arccot} t$  for  $t \ge 0$  denotes the number  $\theta$  in the interval  $0 < \theta \le \pi/2$  with  $\cot \theta = t$ .

**Problem 3.** Prove or disprove: If x and y are real numbers with  $y \ge 0$  and  $y(y+1) \le (x+1)^2$ , then  $y(y-1) \le x^2$ .

**Problem 4.** Find all real-valued continuously differentiable functions f on the real line such that for all x,

$$(f(x))^{2} = \int_{0}^{x} [(f(t))^{2} + (f'(t))^{2}] dt + 2019.$$

**Problem 1.** Find the minimum value of

$$\frac{(x+1/x)^6 - (x^6+1/x^6) - 2}{(x+1/x)^3 + (x^3+1/x^3)}$$

for x > 0.

**Problem 2.** Evaluate  $\sum_{n=0}^{\infty} \operatorname{Arccot}(n^2 + n + 1)$ , where  $\operatorname{Arccot} t$  for  $t \ge 0$  denotes the number  $\theta$  in the interval  $0 < \theta \le \pi/2$  with  $\cot \theta = t$ .

**Problem 3.** Prove or disprove: If x and y are real numbers with  $y \ge 0$  and  $y(y+1) \le (x+1)^2$ , then  $y(y-1) \le x^2$ .

**Problem 4.** Find all real-valued continuously differentiable functions f on the real line such that for all x,

$$(f(x))^{2} = \int_{0}^{x} [(f(t))^{2} + (f'(t))^{2}] dt + 2019.$$