Putnam Seminar
Quiz 1
FALL 2019

Name: \qquad

Start Time: \qquad

End Time: \qquad

Problem 1. A function f is defined for all positive integers and satisfies

$$
f(1)=2019 \text { and } f(1)+f(2)+\cdots+f(n)=n^{2} f(n) .
$$

Compute the exact value of $f(2019)$.

Problem 2. Let $Q_{0}(x)=1, Q_{1}(x)=x$, and

$$
Q_{n}(x)=\frac{\left(Q_{n-1}(x)\right)^{2}-1}{Q_{n-2}(x)}
$$

for all $n \geq 2$. Show that, whenever n is a positive integer, $Q_{n}(x)$ is equal to a polynomial with integer coefficients.

Problem 3. Let A be the $n \times n$ matrix whose entry in the i-th row and j-th column is

$$
\frac{1}{\min (i, j)}
$$

for $1 \leq i, j \leq n$. Compute $\operatorname{det}(A)$.

Problem 4. Show that every positive rational number can be written as a quotient of products of factorials of (not necessarily distinct) primes. For example,

$$
\frac{10}{9}=\frac{2!\cdot 5!}{3!\cdot 3!\cdot 3!} .
$$

Problem 1. A function f is defined for all positive integers and satisfies

$$
f(1)=2019 \text { and } f(1)+f(2)+\cdots+f(n)=n^{2} f(n) .
$$

Compute the exact value of $f(2019)$.

Problem 2. Let $Q_{0}(x)=1, Q_{1}(x)=x$, and

$$
Q_{n}(x)=\frac{\left(Q_{n-1}(x)\right)^{2}-1}{Q_{n-2}(x)}
$$

for all $n \geq 2$. Show that, whenever n is a positive integer, $Q_{n}(x)$ is equal to a polynomial with integer coefficients.

Problem 3. Let A be the $n \times n$ matrix whose entry in the i-th row and j-th column is

$$
\frac{1}{\min (i, j)}
$$

for $1 \leq i, j \leq n$. Compute $\operatorname{det}(A)$.

Problem 4. Show that every positive rational number can be written as a quotient of products of factorials of (not necessarily distinct) primes. For example,

$$
\frac{10}{9}=\frac{2!\cdot 5!}{3!\cdot 3!\cdot 3!}
$$

