Name: \qquad

Start Time:

End Time:

\qquad

Problem 1. What is the units (i.e., rightmost) digit of

$$
\left\lfloor\frac{10^{20000}}{10^{100}+3}\right\rfloor ?
$$

Problem 2. Prove that for $n \geq 2$,

$$
\overbrace{2^{2 \cdots^{2}}}^{n \text { terms }} \equiv \overbrace{2^{2 \cdots^{2}}}^{n-1}(\operatorname{terms} n) .
$$

Problem 3. Define a positive integer n to be squarish if either n is itself a perfect square or the distance from n to the nearest perfect square is a perfect square. For example, 2016 is squarish, because the nearest perfect square to 2016 is $45^{2}=2025$ and $2025-2016=9$ is a perfect square. (Of the positive integers between 1 and 10, only 6 and 7 are not squarish.)

For a positive integer N, let $S(N)$ be the number of squarish integers between 1 and N, inclusive. Find positive constants α and β such that

$$
\lim _{N \rightarrow \infty} \frac{S(N)}{N^{\alpha}}=\beta
$$

or show that no such constants exist.

Problem 4. Let p be an odd prime and let \mathbb{Z}_{p} denote (the field of) integers modulo p. How many elements are in the set

$$
\left\{x^{2}: x \in \mathbb{Z}_{p}\right\} \cap\left\{y^{2}+1: y \in \mathbb{Z}_{p}\right\} ?
$$

Problem 1. What is the units (i.e., rightmost) digit of

$$
\left\lfloor\frac{10^{20000}}{10^{100}+3}\right\rfloor ?
$$

Problem 2. Prove that for $n \geq 2$,

$$
\overbrace{2^{2 \cdots^{2}}}^{n \text { terms }} \equiv \overbrace{2^{2 \cdots^{2}}}^{n-1}(\operatorname{terms} n) .
$$

Problem 3. Define a positive integer n to be squarish if either n is itself a perfect square or the distance from n to the nearest perfect square is a perfect square. For example, 2016 is squarish, because the nearest perfect square to 2016 is $45^{2}=2025$ and $2025-2016=9$ is a perfect square. (Of the positive integers between 1 and 10, only 6 and 7 are not squarish.)

For a positive integer N, let $S(N)$ be the number of squarish integers between 1 and N, inclusive. Find positive constants α and β such that

$$
\lim _{N \rightarrow \infty} \frac{S(N)}{N^{\alpha}}=\beta
$$

or show that no such constants exist.

Problem 4. Let p be an odd prime and let \mathbb{Z}_{p} denote (the field of) integers modulo p. How many elements are in the set

$$
\left\{x^{2}: x \in \mathbb{Z}_{p}\right\} \cap\left\{y^{2}+1: y \in \mathbb{Z}_{p}\right\} ?
$$

