

Putnam Seminar Fall 2019

Quiz 11 Due November 13

Name:	-
Start Time:	-
End Time:	

Problem 1. Let * be a commutative and associative binary operation on a set S. Assume that for every x and y in S, there exists z in S such that x*z=y (this z may depend on x and y). Show that if a, b, c are in S and a*c=b*c, then a=b.

Problem 2. In the additive group of ordered pairs of integers (with addition defined componentwise), consider the subgroup H generated by the three elements

$$(3,8), (4,-1), (5,4).$$

Then H has another set of generators of the form

for some integers a, b with a > 0. Find a.

Problem 3. Let G be a group with identity e and $\phi: G \to G$ a function such that

$$\phi(g_1)\phi(g_2)\phi(g_3) = \phi(h_1)\phi(h_2)\phi(h_3)$$

whenever $g_1g_2g_3 = e = h_1h_2h_3$. Prove that there exists an element $a \in G$ such that $\psi(x) = a\phi(x)$ is a homomorphism (i.e. $\psi(xy) = \psi(x)\psi(y)$ for all $x, y \in G$).

Problem 4. Let G be a finite set of real $n \times n$ matrices $\{M_i\}$, $1 \le i \le r$, which form a group under matrix multiplication. Suppose that $\sum_{i=1}^r \operatorname{tr}(M_i) = 0$, where $\operatorname{tr}(A)$ denotes the trace of the matrix A. Prove that $\sum_{i=1}^r M_i$ is the $n \times n$ zero matrix.

Problem 1. Let * be a commutative and associative binary operation on a set S. Assume that for every x and y in S, there exists z in S such that x*z=y (this z may depend on x and y). Show that if a,b,c are in S and a*c=b*c, then a=b.

Problem 2. In the additive group of ordered pairs of integers (with addition defined componentwise), consider the subgroup H generated by the three elements

$$(3,8), (4,-1), (5,4).$$

Then H has another set of generators of the form

for some integers a, b with a > 0. Find a.

Problem 3. Let G be a group with identity e and $\phi: G \to G$ a function such that

$$\phi(g_1)\phi(g_2)\phi(g_3) = \phi(h_1)\phi(h_2)\phi(h_3)$$

whenever $g_1g_2g_3 = e = h_1h_2h_3$. Prove that there exists an element $a \in G$ such that $\psi(x) = a\phi(x)$ is a homomorphism (i.e. $\psi(xy) = \psi(x)\psi(y)$ for all $x, y \in G$).

Problem 4. Let G be a finite set of real $n \times n$ matrices $\{M_i\}$, $1 \le i \le r$, which form a group under matrix multiplication. Suppose that $\sum_{i=1}^r \operatorname{tr}(M_i) = 0$, where $\operatorname{tr}(A)$ denotes the trace of the matrix A. Prove that $\sum_{i=1}^r M_i$ is the $n \times n$ zero matrix.