

Putnam Seminar Fall 2019

Quiz 12 Due November 20

Name:		
Start Time:		
End Time:		

Problem 1. Prove that every nonzero coefficient of the Taylor series of

$$(1 - x + x^2)e^x$$

about x = 0 is a rational number whose numerator (in lowest terms) is either 1 or a prime number.

Problem 2. Let A be a positive real number. What are the possible values of $\sum_{j=0}^{\infty} x_j^2$, given that x_0, x_1, \ldots are positive numbers for which $\sum_{j=0}^{\infty} x_j = A$?

Problem 3. Determine, with proof, the set of real numbers x for which

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} \csc \frac{1}{n} - 1 \right)^x$$

converges.

Problem 4. Sum the series

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^2 n}{3^m (n3^m + m3^n)}.$$

Problem 1. Prove that every nonzero coefficient of the Taylor series of

$$(1 - x + x^2)e^x$$

about x=0 is a rational number whose numerator (in lowest terms) is either 1 or a prime number.

Problem 2. Let A be a positive real number. What are the possible values of $\sum_{j=0}^{\infty} x_j^2$, given that x_0, x_1, \ldots are positive numbers for which $\sum_{j=0}^{\infty} x_j = A$?

Problem 3. Determine, with proof, the set of real numbers x for which

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} \csc \frac{1}{n} - 1 \right)^x$$

converges.

Problem 4. Sum the series

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^2 n}{3^m (n3^m + m3^n)}.$$