Putnam Seminar
QUIZ 12
FALL 2019

Name:

Start Time: $\qquad$

End Time: $\qquad$

Problem 1. Prove that every nonzero coefficient of the Taylor series of

$$
\left(1-x+x^{2}\right) e^{x}
$$

about $x=0$ is a rational number whose numerator (in lowest terms) is either 1 or a prime number.

Problem 2. Let $A$ be a positive real number. What are the possible values of $\sum_{j=0}^{\infty} x_{j}^{2}$, given that $x_{0}, x_{1}, \ldots$ are positive numbers for which $\sum_{j=0}^{\infty} x_{j}=A$ ?

Problem 3. Determine, with proof, the set of real numbers $x$ for which

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n} \csc \frac{1}{n}-1\right)^{x}
$$

converges.

Problem 4. Sum the series

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^{2} n}{3^{m}\left(n 3^{m}+m 3^{n}\right)}
$$

Problem 1. Prove that every nonzero coefficient of the Taylor series of

$$
\left(1-x+x^{2}\right) e^{x}
$$

about $x=0$ is a rational number whose numerator (in lowest terms) is either 1 or a prime number.

Problem 2. Let $A$ be a positive real number. What are the possible values of $\sum_{j=0}^{\infty} x_{j}^{2}$, given that $x_{0}, x_{1}, \ldots$ are positive numbers for which $\sum_{j=0}^{\infty} x_{j}=A$ ?

Problem 3. Determine, with proof, the set of real numbers $x$ for which

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n} \csc \frac{1}{n}-1\right)^{x}
$$

converges.

Problem 4. Sum the series

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^{2} n}{3^{m}\left(n 3^{m}+m 3^{n}\right)}
$$

