

Putnam Seminar Fall 2019 Quiz 8 Due October 23

Name:_____

Start Time:_____

End Time:_____

Problem 1. Let k be the smallest positive integer for which there exist distinct integers m_1, m_2, m_3, m_4, m_5 such that the polynomial

 $p(x) = (x - m_1)(x - m_2)(x - m_3)(x - m_4)(x - m_5)$

has exactly k nonzero coefficients. Find, with proof, a set of integers m_1, m_2, m_3, m_4, m_5 for which this minimum k is achieved.

Problem 2. Let A and B be points on the same branch of the hyperbola xy = 1. Suppose that P is a point lying between A and B on this hyperbola, such that the area of the triangle APB is as large as possible. Show that the region bounded by the hyperbola and the chord AP has the same area as the region bounded by the hyperbola and the chord PB.

Problem 3. Find the least number A such that for any two squares of combined area 1, a rectangle of area A exists such that the two squares can be packed in the rectangle (without interior overlap). You may assume that the sides of the squares are parallel to the sides of the rectangle.

Problem 4. Find the maximum value of

$$\int_0^y \sqrt{x^4 + (y - y^2)^2} \, dx$$

for $0 \le y \le 1$.

Problem 1. Let k be the smallest positive integer for which there exist distinct integers m_1, m_2, m_3, m_4, m_5 such that the polynomial

$$p(x) = (x - m_1)(x - m_2)(x - m_3)(x - m_4)(x - m_5)$$

has exactly k nonzero coefficients. Find, with proof, a set of integers m_1, m_2, m_3, m_4, m_5 for which this minimum k is achieved.

Problem 2. Let A and B be points on the same branch of the hyperbola xy = 1. Suppose that P is a point lying between A and B on this hyperbola, such that the area of the triangle APB is as large as possible. Show that the region bounded by the hyperbola and the chord AP has the same area as the region bounded by the hyperbola and the chord PB.

Problem 3. Find the least number A such that for any two squares of combined area 1, a rectangle of area A exists such that the two squares can be packed in the rectangle (without interior overlap). You may assume that the sides of the squares are parallel to the sides of the rectangle.

Problem 4. Find the maximum value of

$$\int_0^y \sqrt{x^4 + (y - y^2)^2} \, dx$$

for $0 \le y \le 1$.