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Example 1. Find an equation for the plane containing the points A = (9,−8, 8), B =
(10,−2, 10) and C = (8,−4, 7).

Solution. We need a point on the plane and a vector normal to the plane. We have no

shortage of points. As far as the normal goes, because the vectors
−→
AB and

−→
AC both lie

in the plane, their cross product must necessarily be perpendicular to the plane. We may

therefore take n =
−→
AB ×

−→
AC. We have

n =
−→
AB ×

−→
AC = 〈1, 6, 2〉 × 〈−1, 4,−1〉 =
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i j k
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∣∣∣∣∣∣ = −14i− j + 10k.

Taking A as our base point, we find that an equation for the plane in question is

−14(x− 9)− (y + 8) + 10(z − 8) = 0,

which, after simplification, is equivalent to

−14x− y + 10z = −38.

Example 2. Show that the planes 2x−5y+ 9z = 6 and 4x−10y+ 11z = 0 are not parallel,
and find parametric equations for their line of intersection.

Solution. The components of the normal vector to a plane are the coefficients of x, y and z
in its equation. So we find that the normal vectors to the two planes in question are

n1 = 〈2,−5, 9〉,
n2 = 〈4,−10, 11〉.

In order for the two planes to be parallel, their normal vectors must have the same (or
opposite) directions. In terms of vector algebra, this means that they must be scalar multiples
of one another. This is clearly not the case, since in order to scale n1 into n2 we’d have
to multiply by 2 so that the first components would match, but then the third components
would differ. Therefore the planes cannot be parallel.

If a line L lies in a plane P , then the direction of L must be orthogonal to the normal to
P , because the normal is orthogonal to all vectors lying in P by definition. Since the line
of intersection we seek lies in both of the given planes simultaneously, this means that its
direction must be orthogonal to both n1 and n2. But the only direction orthogonal to both



of these vectors is determined by n1×n2. That is, the direction of the line of intersection is
given by

n1 × n2 =

∣∣∣∣∣∣
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∣∣∣∣∣∣ = 35i + 14j = 7(5i + 2j).

Because it has the same direction but smaller components, we will choose to use the vector
5i + 2j instead. We mention that because the cross product is not the zero vector, this also
proves that n1 and n2 are not parallel.

To find a base point for our line, we need any solution of the system

2x− 5y + 9z = 6,

4x− 10y + 11z = 0.

Because no line is parallel to all of the coordinate planes, we can always take one of the
coordinates of our point to be zero, in order to make solving the system easier. In “most”
situations, the choice of which coordinate coordinate is immaterial. But in our case it is not.
The direction vector 5i + 2j lacks a z-component, making our line parallel to the xy-plane.
However, it will still hit the xz-plane and the yz-plane, so we are free to choose either y = 0
or x = 0. Making the former choice, our system becomes

2x+ 9z = 6,

4x+ 11z = 0.

Gaussian elimination (or matrix inversion) shows that the unique solution to this system is
x = 33

7
, y = −12

7
. Thus, the point (

33

7
, 0,
−12

7

)
lies on the line of intersection.

Putting the point and direction together yields the parametric equations

x =
33

7
+ 5t,

y = 2t,

z =
−12

7
,

for the line of intersection.

Example 3. Show that the planes 3x− 2y + z = 12 and x + 3y − 5z = 7 are not parallel,
and find the acute angle between them.

Solution. As above, it is apparent that the normals to the two planes are

n1 = 〈3,−2, 1〉,
n2 = 〈1, 3,−5〉.



Because the normal vectors make the same angle with both planes, namely 90◦, the angle
between the planes is equal to either the angle between the normals, or its supplement. The
angle between the normals satisfies

cos θ =
n1 · n2

|n1| · |n2|
=

3− 6− 5√
(32 + 22 + 12)(12 + 32 + 52)

=
−8√

14 · 35
=
−8

7
√

10
.

Since the cosine is negative, we know that π
2
< θ ≤ π. In particular, θ is obtuse, so the angle

we really want is

π − θ = π − arccos
−8

7
√

10
≈ 68.81◦.


