Example 1. Let $\mathbf{a}=\langle-2,0,3\rangle$ and $\mathbf{b}=\langle 1,4,1\rangle$. Compute the scalar and vector projections of \mathbf{a} on \mathbf{b} and vice versa.

Solution. According to the formulae derived in class, the scalar projections are

$$
\begin{aligned}
& \operatorname{comp}_{\mathbf{b}}(\mathbf{a})=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}=\frac{-2+0+3}{\sqrt{1^{2}+4^{2}+1^{2}}}=\frac{1}{3 \sqrt{2}} \\
& \operatorname{comp}_{\mathbf{a}}(\mathbf{b})=\frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|}=\frac{-2+0+3}{\sqrt{2^{2}+0^{2}+3^{2}}}=\frac{1}{\sqrt{13}}
\end{aligned}
$$

and the vector projections are

$$
\begin{aligned}
& \operatorname{proj}_{\mathbf{b}}(\mathbf{a})=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b}=\frac{1}{18}\langle 1,4,1\rangle=\left\langle\frac{1}{18}, \frac{2}{9}, \frac{1}{18}\right\rangle, \\
& \operatorname{proj}_{\mathbf{a}}(\mathbf{b})=\left(\frac{\mathbf{b} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}=\frac{1}{13}\langle-2,0,3\rangle=\left\langle\frac{-2}{13}, 0, \frac{3}{13}\right\rangle .
\end{aligned}
$$

Note that interchanging the roles of \mathbf{a} and \mathbf{b} gives different values for the projections.

Example 2. If a force \mathbf{F} moves an object through a displacement \mathbf{d}, the work done is

$$
W=\operatorname{proj}_{\mathbf{F}}(\mathbf{d}) \cdot|\mathbf{d}|=\mathbf{F} \cdot \mathbf{d}
$$

So one might say that the dot product of two (arbitrary) vectors measures the "energy" of their configuration.

Example 3. A sled is pulled 80 ft by a 30 lb force directed at an angle 40° above horizontal. How much work is done by this force?

Solution. Because the angle between the force and the displacement is 40°, we find that

$$
W=\mathbf{F} \cdot \mathbf{d}=|\mathbf{F}| \cdot|\mathbf{d}| \cos 40^{\circ}=80 \cdot 30 \cos 40^{\circ} \mathrm{ft} \mathrm{lb}=2400 \cos 40^{\circ} \mathrm{ft} \mathrm{lb}
$$

which is approximately 1838.5 ft lb .

