Equation:

Graph:

Cross sections:
$x=k: \quad \frac{z^{2}}{(c k / a)^{2}}-\frac{y^{2}}{(b k / a)^{2}}=1 \quad \begin{aligned} & \text { Hyperbolas whose branches open along the } \\ & z \text {-axis, collapsing to a pair of lines through } \\ & \text { the origin when } k=0 .\end{aligned}$
$y=k: \quad \frac{z^{2}}{(c k / b)^{2}}-\frac{x^{2}}{(a k / b)^{2}}=1 \quad \begin{aligned} & \text { Hyperbolas whose branches open along the } \\ & z \text {-axis, collapsing to a pair of lines through } \\ & \text { the origin when } k=0\end{aligned}$ the origin when $k=0$.
$z=k: \quad \frac{x^{2}}{(a k / c)^{2}}+\frac{y^{2}}{(b k / c)^{2}}=1$
Ellipses whose dimensions increase linearly with $|k|$, collapsing to a point when $k=0$.

ELLIPSOIDS

Equation:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Graph:

Cross sections:

$x=k: \quad \frac{y^{2}}{\left(\frac{b}{a} \sqrt{a^{2}-k^{2}}\right)^{2}}+\frac{z^{2}}{\left(\frac{c}{a} \sqrt{a^{2}-k^{2}}\right)^{2}}=1$
$y=k: \quad \frac{x^{2}}{\left(\frac{a}{b} \sqrt{b^{2}-k^{2}}\right)^{2}}+\frac{z^{2}}{\left(\frac{c}{b} \sqrt{b^{2}-k^{2}}\right)^{2}}=1$
$z=k:$

$$
\frac{x^{2}}{\left(\frac{a}{c} \sqrt{c^{2}-k^{2}}\right)^{2}}+\frac{y^{2}}{\left(\frac{b}{c} \sqrt{c^{2}-k^{2}}\right)^{2}}=1
$$

Ellipses whose dimensions decrease as $|k| \rightarrow a^{-}$, collapsing to the origin when $|k|=a$. Cross sections with $|k|>a$ are empty.

Ellipses whose dimensions decrease as $|k| \rightarrow b^{-}$, collapsing to the origin when $|k|=b$. Cross sections with $|k|>b$ are empty.

Ellipses whose dimensions decrease as $|k| \rightarrow c^{-}$, collapsing to the origin when $|k|=c$. Cross sections with $|k|>c$ are empty.

One-Sheeted hyperboloids

Equation:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

Graph:

Cross sections:

$x=k: \frac{y^{2}}{\left(\frac{b}{a} \sqrt{\left|a^{2}-k^{2}\right|}\right)^{2}}-\frac{z^{2}}{\left(\frac{c}{a} \sqrt{\left|a^{2}-k^{2}\right|}\right)^{2}}= \pm 1$
Hyperbolas. Sign matches $a^{2}-k^{2}$.
For $|k|<a$, they open along y-axis.
For $|k|>a$, they open along z-axis.
When $|k|=a$, hyperbolas collapse to a pair of lines through the origin.

Hyperbolas. Sign matches $b^{2}-k^{2}$.
$y=k: \quad \frac{x^{2}}{\left(\frac{a}{b} \sqrt{\left|b^{2}-k^{2}\right|}\right)^{2}}-\frac{z^{2}}{\left(\frac{c}{b} \sqrt{\left|b^{2}-k^{2}\right|}\right)^{2}}= \pm 1$ For $|k|<b$, they open along x-axis. For $|k|>b$, they open along z-axis. When $|k|=b$, hyperbolas collapse to a pair of lines through the origin.

Ellipses whose dimensions increase roughly linearly as $|k|$ increases, achieving their minimum (positive) size when $k=0$.

Equation:

$$
-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Graph:

Cross sections:

$x=k: \frac{-y^{2}}{\left(\frac{b}{a} \sqrt{a^{2}+k^{2}}\right)^{2}}+\frac{z^{2}}{\left(\frac{c}{a} \sqrt{a^{2}+k^{2}}\right)^{2}}=1$
Hyperbolas opening along the z-axis whose z-intercepts increase roughly linearly with $|k|$.
$y=k: \quad \frac{-x^{2}}{\left(\frac{a}{b} \sqrt{b^{2}+k^{2}}\right)^{2}}+\frac{z^{2}}{\left(\frac{c}{b} \sqrt{b^{2}+k^{2}}\right)^{2}}=1$
Hyperbolas opening along the z-axis whose z-intercepts increase roughly linearly with $|k|$.

Ellipses whose dimensions increase roughly
$z=k: \quad \frac{x^{2}}{\left(\frac{a}{c} \sqrt{k^{2}-c^{2}}\right)^{2}}+\frac{y^{2}}{\left(\frac{b}{c} \sqrt{k^{2}-c^{2}}\right)^{2}}=1$ linearly with $|k|$, collapsing to points when $|k|=c$. Cross sections with $|k|<c$ are empty.

Paraboloids

Equation:

Graph:

$$
\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$

Cross sections:

$x=k: \quad z=\frac{c y^{2}}{b^{2}}+\frac{c k^{2}}{a^{2}}$
$y=k: \quad z=\frac{c x^{2}}{a^{2}}+\frac{c k^{2}}{b^{2}}$
$z=k: \quad \frac{x^{2}}{(a \sqrt{k / c})^{2}}+\frac{y^{2}}{(b \sqrt{k / c})^{2}}=1$

Parabolas opening along the z-axis: upward if $c>0$, downward if $c<0$. z intercept increases quadratically in k.

Parabolas opening along the z-axis: upward if $c>0$, downward if $c<0$. z intercept increases quadratically in k.

Ellipses whose dimensions are proportional to $\sqrt{|k|}$, collapsing to the origin when $k=$ 0 . Cross sections are empty unless k and c have the same sign.

Hyperbolic Paraboloids

Equation:

$$
\frac{z}{c}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}
$$

Graph:

Cross sections:

$$
x=k: \quad z=\frac{-c y^{2}}{b^{2}}+\frac{c k^{2}}{a^{2}}
$$

Parabolas opening along the z-axis: downward if $c>0$, upward if $c<0$. Size of z-intercept increases quadratically in k. As $|k|$ increases, upward opening parabolas move downward, and vice versa.

Parabolas opening along the z-axis: upward if $c>0$, downward if $c<0$. Size of z-intercept increases quadratically in k. As $|k|$ increases, upward opening parabolas move downward, and vice versa.

Hyperbolas. Sign matches k / c. Open along x-axis if $k / c>0, y$ axis if $k / c<0$. Intercepts increase linearly in $|k|$. Collapse to a pair of lines through the origin when $k=0$.

