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1 Introduction

The notions of prime and irreducible are essential to the study of factorization in commutative
rings. Roughly speaking, irreducibles are used to produce factorizations of elements, while
primes are used to show that factorizations are unique. More precisely, we have the following
easily proved propositions.

Proposition 1. Let R be a commutative ring with identity. If R is Noetherian then every
element in R can be written as a product of irreducible elements in R.

Proposition 2. Let R be an integral domain. If an element of R can be written as a product
of prime elements in R then this factorization is unique, up to association and the order of
the factors.

In many algebra texts, once the definitions of prime and irreducible have been made,
it is usually proven shortly thereafter that primes in a domain are irreducible but that the
converse to this statement, in general, is false. The real consequence of this result is that while
a ring may possess factorizations into irreducibles for each of its elements, these may not be
unique. Indeed, in the typical counterexamples to “irreducible implies prime” the elements
always have factorizations into irreducibles (since the rings in question are Noetherian) but
do not have factorizations into primes. This leads to the notion of a unique factorization
domain (UFD), wherein one asserts the uniqueness of factorizations into irreducibles. A
simple consequence of the definition is that every irreducible in a UFD is, indeed, prime. In
fact, it is straightforward to deduce the next result from Proposition 2. Recall that an AP
domain is a domain in which every irreducible element is prime.

Proposition 3. Let R be an integral domain in which every element can be written as a
product of irreducible elements. Then R is an AP domain if and only if R is a UFD.

A natural question to then ask is if putting some sort of restriction on the factorizations of
elements is essential to obtaining the “irreducible implies prime” statement. That is, are all
AP domains also UFDs? It is the goal of this note to prove that the answer to this question
is “no” by explicitly construct a non-UFD in which every irreducible element is prime.

Let F be a field and let F [X;Q+
0 ] denote the ring of polynomials in nonnegative rational

powers of X:

F [X;Q+
0 ] =

∑
r∈Q+

0

arX
r

∣∣∣∣∣∣ ar ∈ F, almost all zero


We now state our main result.

Theorem 1. The ring F [X;Q+
0 ] is an AP domain but is not a UFD.



2 Proof of the Theorem

As in F [X], we can define the degree of nonzero elements in F [X;Q+
0 ]. First, given

0 6= f(X) =
∑

r∈Q+∪{0}

arX
r ∈ F [X;Q+

0 ]

set
S(f) = {r | ar 6= 0}.

Then S(f) is finite by and we define

deg f(X) = max
r∈S(f)

{r}.

It is easy to see that the degree has the familiar property deg f(X)g(X) = deg f(X) +
deg g(X) for nonzero f(X), g(X) ∈ F [X;Q+

0 ]. Using the degree it is trivial to verify that
F [X;Q+

0 ]× = F .
Given r ∈ Q+ define φr : F [X;Q+

0 ] → F [X;Q+
0 ] by φr(f(X)) = f(Xr). It is easy to see

that this is a homomorphism. In fact, we can say a good deal more.

Lemma 1. For r ∈ Q+, φr is an automorphism of F [X;Q+
0 ] satisfying deg φr(f(X)) =

r deg f(X).

Proof. For any r ∈ Q+, φr is an automorphism since 1/r ∈ Q+ and φ1/r provides the inverse
homomorphism. As for the degree statement, it is clearly true if f(X) is a (nonzero) constant.
So let f(X) ∈ F [X;Q+

0 ] have positive degree. Then

φr(f(X)) = φr

 ∑
s∈S(f)

asX
s

 =
∑

s∈S(f)

asX
rs

which proves the result in this case.

Since F [X] can be viewed (in the obvious way) as a subring of F [X;Q+
0 ] and these two

rings have the same units, we immediately obtain the next result.

Lemma 2. Let f(X) ∈ F [X]. If f(X) is irreducible in F [X;Q+
0 ] then f(X) is irreducible

in F [X].

Proof. A nontrivial factorization in F [X] is a nontrivial factorization in F [X;Q+
0 ].

We are now in a position to prove the second part of the theorem.

Lemma 3. Let f(X) ∈ F [X;Q+
0 ] have positive degree. If f(X) is irreducible it is prime.

Proof. Suppose that f(X) divides a(X)b(X) ∈ F [X;Q+
0 ]. Then there is a g(X) ∈ F [X;Q+

0 ]
so that f(X)g(X) = a(X)b(X). Choose n ∈ Z+ so that nr ∈ Z for all r ∈ S(f) ∪ S(g) ∪
S(a) ∪ S(b). Then φn(f(X)), φn(g(X)), φn(a(X)), φn(b(X)) ∈ F [X] and

φn(f(X))φn(g(X)) = φn(f(X)g(X)) = φn(a(X)b(X)) = φn(a(X))φn(b(X)).

The fact that f(X) is irreducible in F [X;Q+
0 ] and φn is an automorphism implies that

φn(f(X)) is irreducible in F [X;Q+
0 ] as well. The preceding lemma then implies that φn(f(X))



is irreducible in F [X] as well. Since we are only dealing with polynomials at this point, and
F [X] is a UFD, we conclude (without loss of generality) that φn(a(X)) = c(X)φn(f(X)) for
some c(X) ∈ F [X]. Applying φ1/n we conclude that

a(X) = φ1/n(c(X))f(X).

That is, f(X) divides a(X) in F [X;Q+
0 ] and hence f(X) is prime.

We now turn to proving the first part of the theorem. We will focus on elements of the
form aXr for a ∈ F× and r ∈ Q+. Because the degree of such an element is positive, these
are not units. Moreover we have the next fact.

Lemma 4. Let a ∈ F×, r ∈ Q+. The only divisors of aXr in F [X;Q+
0 ] are those of the

form bXs where b ∈ F× and s ∈ Q+ ∪ {0} with s ≤ r.

Proof. Let f(X) ∈ F [X;Q+
0 ] be a divisor of aXr. Then we can find g(X) ∈ F [X;Q+

0 ] so that
aXr = f(X)g(X). As above, there is a positive integer n so that φn(aXr), φn(f(X)) and
φn(g(X)) are all elements of F [X]. Moreover, the fact that φn is a homomorphism implies

aXrn = φn(aXr) = φn(f(X))φn(g(X)).

Since we are working in F [X] at this point, and X is irreducible there, we must have
φn(f(X)) = bX t for some b ∈ F× and nonnegative integer t ≤ rn. But then

f(X) = φ1/n(bX t) = bX t/n

and t/n ≤ r, so that f(X) has the required form. This finishes the proof.

The next lemma concludes the proof of the theorem.

Lemma 5. The ring F [X;Q+
0 ] is not a UFD. In particular, the element X ∈ F [X;Q+

0 ]
cannot be written as a product of irreducible elements in F [X;Q+

0 ].

Proof. We have just seen that the only divisors of X are of the form aXr where a ∈ F× and
0 ≤ r ≤ 1 is a rational number. But no such element is irreducible in F [X;Q+

0 ]. For if r = 0
then aXr is a unit, while if r > 0 then aXr = (aXr/2)Xr/2 and neither of the factors on the
right is a unit. Hence X cannot be written as a product of irreducibles.


