
On the Completeness of R[[X ]].

R. C. Daileda

1 Introduction: Notation and Terminology

LetR be a ring andR[[X]] the ring of formal power series overR in the variableX. For f =
∑
i aiX

i ∈ R[[X]],
define the value of f at 0 to be f(0) = a0. The evaluation at 0 map E0 : R[[X]]→ R, given by E0(f) = f(0),
is a surjective homomorphism, according to the definitions of power series addition and multiplication. Notice
that X is central in R[[X]] since all of its coefficients are central in R. Furthermore, for any i ≥ 0,

fXi = Xif =
∑
j

(0 + 0 + · · ·+ 0 + 1aj−i︸ ︷︷ ︸
ith term

+0 + · · ·+ 0)Xj =
∑
j≥i

aj−iX
j =

∑
j≥0

ajX
j+i.

That is, X distributes through the infinite “sum”
∑
i aiX

i. It follows at once that the kernel of E0 is the
ideal m = (X) = X ·R[[X]] = R[[X]] ·X, and that

mn = (Xn) =

{∑
i

aiX
i ∈ R[[X]]

∣∣∣∣ a0 = a1 = · · · = an−1 = 0

}
(1)

for all n ≥ 1. Since R[[X]]/m ∼= R, when R is commutative, m is prime if and only if R is a domain, and
m is maximal if and only if R is a field. In the second case, f 6∈ m if and only if f(0) 6= 0 if and only if
f ∈ R[[X]]×, so that R[[X]] is a local ring.

Although m need not be the only maximal ideal in R[[X]] in general ((p) is maximal in Z[[X]] for every

prime p, since it is the kernel of the composite map Z[[X]] → (Z/pZ)[[X]]
E0→ Z/pZ.), m nonetheless plays

a distinguished role in the structure theory of R[[X]]. The powers of m form a strictly decreasing chain of
ideals (Xn 6∈ mn+1), and by (1),

⋂
n≥1 m

n = (0). From this it is not hard to deduce that for every f ∈ R[[X]],

there is a unique n ≥ 0 so that f ∈ mn \mn+1. The integer n is called the order of f (at zero) and is denoted
ord(f). The existence and uniqueness of ord(f) can also be deduced directly from (1), where we find that if
f =

∑
i aiX

i, then
n = ord(f) = min{i ≥ 0 | ai 6= 0}.

Thus
mn = {f ∈ R[[X]] | ord(f) ≥ n} and mn \mn+1 = {f ∈ R[[X]] | ord(f) = n}.

Thus, ord(f) = n if and only if f = Xng for some g 6∈ m, i.e. g(0) 6= 0. If f =
∑
i aiX

i has order n, we call
an the order coefficient. It is clear that an = g(0).

Since mmmn = mm+n and mm + mn ⊂ mmin{m,n} for all m,n ≥ 0, for f, g ∈ R[[X]] we have

ord(fg) ≥ ord(f) + ord(g), (2)

ord(f + g) ≥ min{ord(f), ord(g)}. (3)

In some situations we can be more precise. Suppose m = ord(f) and n = ord(g), and write f = Xmf̃ ,

g = Xng̃ with f̃ , g̃ ∈ R[[X]] satisfying f̃(0) 6= 0, g̃(0) 6= 0. Then

fg = Xm+nf̃ g̃,
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and (f̃ g̃)(0) = f̃(0)g̃(0). If at least one of f̃ , g̃ is not a zero divisor, then (f̃ g̃)(0) 6= 0, and we find that

ord(fg) = m+ n = ord(f) + ord(g).

A different restriction yields equality in (3). First, since −f = Xm(−f̃) and (−)̃f(0) = −f̃(0) 6= 0, we have
ord(−f) = ord(f). Suppose ord(f) > ord(g). Then ord(f + g) ≥ min{ord(f), ord(g)} = ord(g) and so

ord(g) = ord(g + f − f) ≥ min{ord(g + f), ord(−f)} ≥ ord(g).

It follows that min{ord(f + g), ord(f)} = ord(g) and hence

ord(f + g) = ord(g) = min{ord(f), ord(g)} (4)

when ord(g) < ord(f). Notice that f and g are interchangeable, so it suffices to assume ord(f) 6= ord(g) in
order to reach equality (4).

The order of a power series in some sense measures its size. But a series with a large order is highly
divisible by X, so “vanishes” to a high degree at X = 0. So it is natural to think of such a series as nearly
zero, which is commensurate with the convention that ord(0) =∞. So we really want to think of f ∈ R[[X]]
with ord(f)� 1 large as “small.” This is easily arranged as follows. Choose any α ∈ (0, 1) and for f ∈ R[[X]]
define it absolute value to be

|f | = αord(f),

where α∞ = 0. Then |f | → 0 as ord(f)→∞. The inequalities (3) and (2) become

|fg| ≤ |f | · |g|, (5)

|f + g| ≤ max{|f |, |g|}, (6)

for all f, g ∈ R[[X]]. As above, equality holds in (5) when the product of the (nonzero) order coefficients of
f and g is nonzero, in particular whenever R is free from zero divisors. On the other hand, equality in (6)
guaranteed whenever |f | 6= |g|. Furthermore, |f | = 0 if and only if ord(f) = ∞, which only happens when
f = 0.

The shift from ord(·) to | · | is mainly psychological. One is easily computed from the other, and any
proof using the absolute value can easily be reformulated in terms of the order, and vice versa. However, the
absolute value allows us to efficiently bring topological ideas into play. Specifically, for f, g ∈ R[[X]], define
the distance between them to be

d(f, g) = |f − g|.

We claim that d is an ultrametric on R[[X]]. Let f, g, h ∈ R[[X]]. Being an integral power of a positive real
number (or zero), d(f, g) ≥ 0, and d(f, g) = 0 if and only if ord(f −g) =∞, which is equivalent to f −g = 0,
or f = g. Because ord(f − g) = ord(g − f), d(f, g) = d(g, f). Finally, we have

d(f, g) = |f − h+ h− g| ≤ max{|f − h|, |h− g|} = max{d(f, h), d(h, g)},

which is the required ultrametric inequality.

2 R[[X]] as a Topological Ring

The topology on R[[X]] induced by the ultrmetric d is called the m-adic topology. What does a ball in this
topology look like? Let f ∈ R[[X]] and ε > 0. If ε ≤ 1, Then d(f, g) < ε if and only if ord(f − g) > log ε

logα .

As the order always belongs to N0, if M is the least positive integer greater than log ε
logα , then d(f, g) < ε if

and only if f − g ∈ mM . That is, if and only if g ∈ f + mM . If ε > 1, then d(f, g) < ε for all g ∈ R[[X]],
which means the ε-ball centered at f is all of R[[X]], or f + m0. So every open balls centered at f is an
additive coset f + mM for some M ∈ N0. Conversely, g ∈ f + mM if and only if ord(f − g) ≥ M . Because
we are dealing with integers, this is equivalent to the strict inequality ord(f − g) > M − 1

2 , which occurs
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if and only if |f − g| < αM−
1
2 . Hence, the open balls centered at f in the m-adic topology are precisely

the cosets f + mM , M ∈ N0. Of course, one can eschew the use of | · | entirely and construct the m-adic
topology directly by showing that the cosets of the powers of m are a basis for a topology on R[[X]], but in
the author’s opinion the use of the absolute value streamlines the process and makes the resulting topology
somewhat more intuitive.

Proposition 1. The sets f + mM , where f ∈ R[[X]] and M ∈ N, form a basis for the m-adic topology on
R[[X]].

Let s, f, g ∈ R[[X]]. Suppose that f + g = s. Then for any M ∈ N, (f + mM ) + (g + mM ) = (f +
g) + mM = s + mM . If A : R[[X]]2 → R[[X]] is the addition function A(f, g) = f + g, this proves that
A((f +mM )× (g+mM )) ⊂ s+mM or (f +mM )× (g+mM ) ⊂ A−1(s+mM ). This shows that A−1(s+mM )
is open in R[[X]]2, and hence that A is continuous. If p ∈ R[[X]] and fg = p, then (f + mM ) · (g + mM ) ⊂
fg + mM + m2M = fg + mM = p + mM . Therefore if M : R[[X]]2 → R[[X]] is the multiplication function
M(f, g) = fg, then (f+mM )×(g+mM ) ⊂M−1(p+mM ), which proves that M is continuous as well. Lastly,
the negation function N : R[[X]] → R[[X]] is continuous since it’s invertible and N(f + mM ) = −f + mM .
This entire discussion goes to show that under the m-adic topology, R[[X]] is a topological ring.

Proposition 2. When endowed with the m-adic topology, R[[X]] is a topological ring.

3 Completeness of R[[X]]

Let {fn} be a sequence of power series in R[[X]]. The notions of convergent sequences and Cauchy sequences
are defined using d in the usual way. Suppose {fn} converges to f ∈ R[[X]]. Fix an index i0 ∈ N0. Choose
N ∈ N so that d(fn, f) < αi0 for n ≥ N . Then ord(fn−f) > i0 for n ≥ N . This means that the i0 coefficient
of fn − f is zero for n ≥ N . If we write fn =

∑
i aniX

i and f =
∑
i aiX

i, then we find that an,i0 = ai0
for n ≥ N . In other words, the i0-coefficient sequence {an,i0}n∈N stabilizes (is eventually constant). Since
i0 was arbitrary, we find that if fn → f , then for each i ∈ N0, the coefficient sequence {ani}n∈N stabilizes.
The converse also holds. For suppose that {ani}n∈N stabilizes for all i. For each i let ai denote the eventual
constant value of {ani}n∈N and set f =

∑
i aiX

i. Let M ∈ N and choose N so large that ani = ai for all
n ≥ N and i ≤ M . That is, N is chosen so that the first M + 1 coefficient sequences are stable for n ≥ N ;
this is possible because we are only considering a finite number of sequences. Then for n ≥ N and i ≤M , the
ith coefficient of fn−f is ani−ai = 0. This means that fn−f ∈ mM+1 or d(fn, f) = |fn−f | ≤ αM+1 < αM

for n ≥ N . Since M ∈ N was arbitrary, and αM decreases to zero as M →∞, it follows that fn → f .

So the convergent sequences are exactly those sequences whose coefficient sequences all stabilize. This
means that if {fn} converges to f , then for any I ∈ N0, by choosing N sufficiently large, the first I coefficients
of fn and f agree, for n ≥ N . What about Cauchy sequences? By the usual argument, every convergent
sequence is Cauchy. Is the converse true? It turns out that the answer is “yes,” and we will prove that
this is the case by showing that every Cauchy sequence has stabilizing coefficient sequences. Fix i0 ∈ N0.
Choose N ∈ N so large that d(fm, fn) < αi0 for all m,n ≥ N . Then, in particular, d(fN , fn) < αi0 for all
n ≥ N . In terms of the order, this says ord(fN − fn) > i0 for n ≥ N . This implies that aN,i0 − an,i0 = 0,
or an,i0 = aN,i0 for n ≥ N . Hence {an,i0}n∈N stabilizes. As i0 was arbitrary, this is true of every coefficient
sequence, and our claim is proven.

Proposition 3. Let {fn} be a sequence in R[[X]]. The following are equivalent.

1. {fn} is convergent in R[[X]].

2. Every coefficient sequence of {fn} stabilizes.

3. {fn} is a Cauchy sequence.

Our main result is now an immediate corollary of Proposition 3.
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Theorem 1. The power series ring R[[X]] is complete in the m-adic topology.

Coupled with the ultrametric property of d, the completeness of R[[X]] has the following interesting
consequence regarding the summability of infinite series.

Corollary 1. Let {fn} be a sequence in R[[X]]. The infinite series
∑
n fn converges in R[[X]] if and only

if fn → 0.

Proof. For n ∈ N, let sn =
∑

1≤i≤n fi be the nth partial sum of the series. We need to show that {sn}
converges if and only if fn → 0. The forward implication is standard: if sn → s, then sn−1 → s, so that
fn = sn − sn−1 → s− s = 0. To prove the converse, begin by observing that for m < n, we have

d(sm, sn) = |sm − sn| =

∣∣∣∣∣
n∑

i=m+1

fi

∣∣∣∣∣ ≤ max
m<i≤n

{|fi|}

by the ultrametric inequality (6).1 If fn → 0, given ε > 0 there is an N ∈ N so that |fn| < ε for n ≥ N . So
if n > m ≥ N , we have

d(sm, sn) ≤ max
m<i≤n

{|fi|} < ε.

Hence {sn} is a Cauchy sequence, and therefore convergent by completeness.

Corollary 1 shows that if f =
∑
i aiX

i ∈ R[[X]], then the partial sums sn =
∑

0≤i≤n aiX
i form a

convergent sequence. If n ≥ N , then ord(f − sn) ≥ n+ 1 > N . Hence, d(f, sn) < αN for n ≥ N , from which
we conclude that sn → f . That is,

f =
∑
i

aiX
i = lim

n→∞

n∑
i=0

aiX
i. (7)

The sum on the left is a formal power series, nothing more than a symbolic container for the sequence {ai}
of coefficients. The equality (7) tells us that if we use the m-adic topology, then f is, indeed, the sum of the
infinite series suggested by the notation. Moreover, because the partial sums in (7) are all polynomials, we
arrive at another corollary.

Corollary 2. In the m-adic topology, the ring of polynomials R[X] is dense in R[[X]].

One power series operation that can be irritating to treat directly is composition. However, it is readily
treatable from the topological point of view. If f =

∑
i aiX

i ∈ R[[X]] and g ∈ m, then ord(aig
i) ≥

ord(ai) + i ord(g) ≥ i, which means that aig
i → 0. Therefore the infinite series

f ◦ g =

∞∑
i=0

aig
i

converges in R[[X]], by Lemma 7. This is the composition of f with g.

Let aj , j ∈ J , be coset representatives for R[[X]]/m. Then C = {aj + m}j∈J is an open cover of R[[X]]
by nonempty, pairwise disjoint sets. As such, C has no proper subcover. So in order for R[[X]] to be
compact, it is necessary that |J | = [R[[X]] : m] = |R| is finite. The converse is also true, although it’s
substantially harder to prove. Viewing R[[X]] as RN0 , one can show that the m-adic topology is just the
product topology, provided each factor of R is given the discrete topology. When R is finite, it is compact
in the discrete topology, and Tychonoff’s theorem then implies that RN0 , and hence R[[X]], is compact. It
would be interesting to see a purely ring-theoretic proof thet R[[X]] is compact when R is finite, but it is
likely that any such proof would be quite complicated.

1Strictly speaking, the ultrametric inequality (6) only applies to sums of two series. Its extension to arbitrary finite sums is
easily proven by induction, however.
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4 Examples

Let’s look at a few power series rings that “occur in nature.” A non-Archimedean local field is a field F
complete with respect to a discrete valuation ν, and with a finite residue field R/p, where R is the valuation
ring and p is the valuation ideal of ν. It is a theorem in the theory of local fields that any such F is isomorphic
to either a finite extension of the field of p-adic numbers Qp (when the characteristic is zero), or the Laurent
series ring Fq((X)) over the finite field with q elements (when the characteristic is positive). In the second
case the valuation ring is Fq[[X]] and the valuation ideal is m.

If F is a field and a ∈ F , there is an embedding ϕ : F [X] ↪→ F [[X − a]] which maps each polynomial
to its Taylor expansion at a. Under this embedding, any f ∈ F [X] satisfying f(a) 6= 0 becomes a unit in
F [[X − a]]. That is, the elements in the complement of the maximal ideal ma = (X − a) become invertible
in F [[X − a]]. By the universal property of localizations, we obtain an embedding ϕ̂ : F [X]ma ↪→ F [[X − a]],

which maps f(X−a)
g(X−a) to f(X−a)g(X−a)−1. However, not every power series in F [[X−a]] has this form. One

can show that the coefficients of a “rational” power series must satisfy an nth order linear recurrence, which
means that a series like

∑
i(X −a)i

2

will not be in the image of ϕ̂. But ϕ̂(F [X]ma) ⊃ ϕ(F [X]) = F [[X −a]],
by Corollary 2. All told, this means that the localization F [X]ma

is incomplete in the ma-adic topology, and
that F [[X − a]] serves as its completion. This is analogous to the construction of the p-adic integers Zp, p
prime, from Z. One first localizes to ZpZ = {ab | a ∈ Z, b ∈ N, p - b}, and then completes ZpZ in the p-adic
topology. The resulting ring Zp is not a formal power series ring, but the elements can still be expressed as
convergent power series in p.
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