Rings of Fractions

R. C. Daileda

1 Multiplicative Sets

Let R be a commutative ring. A subset S C R is called multiplicative if: (i) 1 € S and (ii) for all s,¢ € S, one
has st € S. We will call a multiplicative set .S proper if S does not contain 0 or zero divisors; equivalently, if
s€S,a€ R and sa =0, then a = 0.

Remark 1. Not all authors require a multiplicative set S to satisfy 1 € S. However, for the purpose of
constructing fractions this can be assumed WLOG.

Remark 2. The term proper is the author’s. Although multiplicative sets that avoid 0 and avoid zero divisors
occur frequently in the context of fractions, these sets inconveniently do not seem to have a dedicated
adjective.

Example 1. For any a € R, S = {1,a,a?, a®,...} is multiplicative.
Example 2. If p C R is a prime ideal, then S = R\ p is a multiplicative set.

Example 3. If R is a domain, then R\ {0} is a proper multiplicative set. Any multiplicative S C R\ {0}
is also proper.

Theorem 1. Let R be a commutative ring, S C R a multiplicative set, and a C R an ideal. If SNa= @ (S
avoids a), then there exists a prime ideal p containing a and avoiding S.

Before proving Theorem 1, we remark that it can be rephrased as follows. If S is a multiplicative set
contained in R\ a for some ideal a, then S is contained in R\ p for some prime ideal p. This shows that the
multiplicative sets R \ p are in some sense the “maximal” multiplicative sets.

Proof of Theorem 1 (Sketch). Apply Zorn’s Lemma to the (nonempty) set of ideals avoiding S to produce
an ideal p which is maximal with respect to avoiding S. We claim that any such p must be prime. To see
this, let ab € p and suppose a,b & p. Then p+(a) and p+ (b) must both intersect S. Since S is multiplicative,
this implies that (p + (a))(p + (b)) intersects S. But (p + (a))(p + (b)) = p? + (a)p + (b)p + (ab) C p, which
means p intersects S, a contradiction. So either a € p or b € p, and p is therefore prime. O

Remark 3. If 0 € S, then S avoids (0). Theorem 1 then implies that S is contained in the complement of a
prime ideal.

Remark 4. Although every multiplicative set avoiding 0 is contained in the complement of a prime, not every
such set is actually equal to a prime complement. For example, the simple multiplicative set {1} in Z is
contained in the complement every prime ideal, but is equal to none of them.

2 Fractions

Throughout this section we fix a commutative ring R and a multiplicative set S C R. For (a, s), (b,t) € Rx S
define
(a,s) ~ (b,t) & (3s' € 9)(s'(at —bs) =0).



Remark 5. Notice that if at — bs = 0, then (a, s) ~ (b,t), since any s’ € S will satisfy s'(at — bs) = 0.
Remark 6. If S is proper, then (a, s) ~ (b,t) if and only if at — bs = 0.

Lemma 1. ~ is an equivalence relation on R x S.

Proof. Reflezivity. Since as —as =0, (a,s) ~ (a, s).

Symmetry. If (a,s) ~ (b,t), then s'(at —bs) = 0 for some s’ € S. Negating we obtain s'(bs —at) = 0, so that
(b,t) ~ (a,s) as well.

Transitivity. Suppose (a, s) ~ (b,t) and (b,t) ~ (¢,u). Then there are s’,s” € S so that §'(at — bs) = 0 and
s"(bu—ct) = 0. Multiply the first equality by s”u and the second by ss’. This yields s's” (atu—bsu) = 0 and
§'s"(bsu—est) = 0. Adding these we find that s's”(atu —cst) = §'s"t(au—cs) = 0. Since S is multiplicative,
s's"t € S. Hence (a,s) ~ (c,u).

O
Remark 7. The equivalence ~ is intended to mimic the relation on Z x N used to construct the rational

numbers. The mysterious presence of s’ in the “cross product” s'(at — bs) has to do with the potential
presence of zero divisors in S and will be explained later.

For (a,s) € R x S, let the fraction ¢ denote the equivalence class of (a, s) under ~. That is,

a

, ={(b,t) e Rx S| (b,t) ~ (a,s)}.

We call a the numerator and s the denominator of ¢. We will denote the quotient space (R x S)/~ of all
fractions by ST R.
at a

Remark 8. If s,t € S and a € R, then & = %, since 1 - (ats — ast) = 0. Thus, we can cancel across the
fraction bar as usual.

Remark 9. If s,¢ € S, then both 2 and £ are members of S R.
Remark 10. If 0 € S, then S™!'R has a single element (exercise).

For 2, % ¢ S='R, define

st
a b at+bs
242 = 1
s+t st ()
a b ab
.2 == 2
s t st ()

We claim that these operations are well-defined and make S™!R into a commutative ring.

Well-defined. Suppose ¢ = ‘;—,, and % = % in S7'R. Then we can find s1,s2 € S so that s;(as’ — a’s) =
so(bt’ —b't) = 0. Then sy89 € S and
s182((at + bs)s't’ — (a't’' +V's")st) = s1s2((as’ — a’s)tt’ + (bt — b't)ss’)
= 5951(as’ — a's)tt’ + syso(bt’ — b't)ss’

=59-0-tt' +5,-0-55 =0.
at+bs a't’'+b's’

Hence =y , and addition is well-defined.

As for multiplication, we have

s182(abs’t’ — a't'st) = sysa(abs’t’ — ab's't + ab's't — a'b st)
s152(as’ (bt’ — b't) + b't(as’ —a's))
= as's1so(bt’ — b't) + b'tsesi(as’ —a's)

=as's; -0+ b'tsy-0=0,



@’b’  Therefore multiplication is also well-defined.

. b
which proves that % = %5

(SR, +) is an abelian group. Let e, %, € S7'R. Then

<
u

,_i_f
u

: sTE) T
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a+<b c)_a+bu+ct_atu+(bu+ct)s (at+bs)u+cst_at+bs+c_(a b) c
s

so that addition of fractions is associative. It is clearly commutative. The element % is the additive identity,

since
0 a _ Os + 1a a

1 s 1s

w

And the inverse of ¢ is =%, since

(S7IR,-) is a commutative monoid. Multiplication of fractions is obviously commutative, and it is easily

seen to be associative:
a (b ¢ _a be B abe _ ab ¢ _[a b\ ¢
s\t u) s tu stu st u \s t)t

The identity element is 1 since
1

1

_1a a

» |

T ls s

Distributivity. Because multiplication of fractions is commutative, we only need to check distributivity on
one side. Indeed, we have

a<b+c> _a butct albutct) abu+act
s

s\t wu tu stu stu
_ (abu)(stu) + (act)(stu) _ abu N act
B (stu)? ~ stu - stu

Altogether, we have now proven the following result.

Theorem 2. Let R be a commutative ring and S C R a multiplicative set. Under addition and multiplication
of fractions as given by (1) and (2), ST R is a commutative ring, called the localization of R at (or by) S.
Remark 11. The ring S~'R is also called a ring of fractions.

Remark 12. Observe that for any s € S, % = % and % = 2.

Remark 13. If two fractions have the same denominator, we can add them as usual:

a b as+bs (a+b)s a+b
2 2 :

S S S S S

Example 4. The set N is multiplicative in Z. The ring N7!Z is a field (see below). It is usually denoted
by Q and is called the field of rational numbers.

Example 5. If p C R is a prime ideal and S = R\ p, the localization S™'R is usually denoted Ry, and by
abuse of notation is called the localization of R at p, despite the fact that we are localizing at S.

Example 6. If R is a domain and p = (0) above, then every nonzero element of R is a unit. For ifa € R
and a # 0, then a € S. Hence for any s € S, we have ¢, 2 € Ry and ¢> = 22 = % It follows that Rg) is a
field, the quotient field of R.



Example 7. Let R = Z/6Z and S = {1,2,22,23,...} = {1,2,4}. Notice that for any a € R, in S~'R we
have )
a da  4a 2£ a 21a

212 2 1 7 2 1>

so that every fraction in S~'R has the form &

1

3 3

Moreover,

[\V]

_0_0

1 1-2 2 1

which implies % = % and % = % This means S™'R = {%, %, %} Because % # %, this shows that S~'R has
exactly 3 elements and must therefore be isomorphic to Z/3Z. We’ll have a less ad hoc explanation for this

shortly.

Remark 14. We are now in a position to say a few words about the extra s’ appearing in the definition of
~. Suppose we localize R at S and s € S is a zero divisor. This means there is a nonzero a € R so that
S a S

sa = 0. This translates to the equation £ - ¢ = 2 in S~'R. But in S~!R the fraction £ is a unit, so we can

cancel it to get ¢ = % But a is not zero, so the usual notion of equivalence of fractions won’t allow this to

happen. Because of the “correction” factor we’ve included, however, § = % follows from sa = 0.

3 The Universal Property

Let R be a commutative ring and let S C R be a multiplicative set. The localization S™'R comes equipped
with a natural map ¢s : R — S™'R given by pg(a) = 1 ®s is a homomorphism by Remark 13, and for
any s € S, pg(s) = £ is a unit in SR, with inverse 1. That is, ¢(S) C (S7'R)*. In other words, in the
localization S™!'R the elements of S all become units. When $ is proper, the following lemma shows that

we can regard ST R as an extension of R, one in which every element of S becomes invertible.

Lemma 2. Let R be a commutative ring with multiplicative subset S. The natural map pgs is an embedding
if and only if S is proper.

Proof. Suppose S is proper and ¢g(a) = § = %. Then a = 0, since S contains no zero divisors. Hence ¢g
is injective. Conversely, suppose @g is injective, and let a € R, s € S satisfy sa = 0. Then 0 = ¢g(sa) =
vs(s)ps(a). Since pg(s) is a unit, we must have pg(a) = 0. As pg is injective, this implies a = 0. Therefore
S is proper. O

The so-called universal property of localization characterizes S™'R in terms of ¢g. It is the main tool
for constructing maps out of localizations.

Theorem 3 (Universal Property of Localization). Let R be a commutative ring and S C R a multiplicative
set. If¢: R — R’ is a ring homomorphism satisfying ¢(R) C (R')*, then v lifts to a unique homomorphism
¥ : STIR — R’ making the diagram

SR (3)
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commute. If ¥ is an embedding, so is zZ

Proof. Assuming 12 exists, for any s € S we must have

3(3)=0((5) ) =0(5) " = Fovstart =ui



Therefore if a € R, then

F(2)=3(22)=0(2)7(3) = Powst@u) = viayu(s) ™ (W

This proves that if 1Z exists, then it is unique, since it must be given by (4). To prove existence it suffices to
show that the formula (4) yields a well-defined homomorphism with domain S~!R.

So suppose %,% SR satisfy ¢ = 7. Then there is an s’ € S so that s'(at — bs) = 0. Applying 1) we
obtain ¥ (s") (¢ (a)Y (€)= (b)Y (s)) = 0. Smce ¥(s') is aunit in R’, this implies ¢ (a)y(t) = ¥(b)y(s). However,

both 9(s) and ¥(t) are unlts in R’ as well, and cancellation then yields ¢ (a)y(s) =% = 1(b)w(t) . This shows
that the rule ¢ (2) = (s)~! is well-defined. It is a homomorphism since ¢(1) = (1)y(1) "' =1-1=1
and for any <, % es” 1R.

(“*“)zwm+mwmrl

Finally, let ¢ € S™'R. Since (s )12(%) = t(a) and 9 (s) € (R')*, we find that ¢ € ker ¢ is and only if
a € ker . That is

ker) = S~ L kertp = {‘;

aekem/),SES}. (5)

Therefore 1Z will be injective whenever 1 is. This completes the proof. O

Remark 15. The explicit formula (4) for 12 is not given in the statement of Theorem 3 because it can
be deduced from the diagram (3). Nonetheless, the rule (4) derived in the course of the proof is worth
remembering.

Example 8. Recall Example 7, in which R = Z/6Z and S = {1,2,22,...} = {1,2,4}. Let m: Z/6Z — Z/3Z
be the natural surjection. Since 7(2) = 2 and w(4) = 1 are units in Z/3Z, Theorem 3 implies there is a
unique lift 7 : S~'R — Z/37Z. According to (5), the kernel of 7 consists of the fractions % and %, s € S. But

which means that ker 7 = {%}, i.e. T is an embedding. Since 7 is surjective, so is 7. 7 therefore provides an
isomorphism S™'R & Z/3Z.

Example 9. The rational numbers are traditionally defined to be N~'Z. But since Z is a domain, another
candidate is the quotient field Z ). Which option is the “right” way to define Q7 Both: they’re isomorphic!
Under the natural map ¢(g) : Z — Zg), a natural number n is carried to 7, which is a unit simply because

n # 0. Theorem 3 lifts (g to @(o) : N~'Z — Loy, given by

m m<n>—1 m
— = — (= —_
n 1 \1



Because Z is a domain, Z \ (0) is proper, so Lemma 2 tells us ¢ is an embedding. Therefore (o) is an
embedding, too. @) is also surjective. To see this, let ™ € Zy. Write n = en/ with e € {£1} and n’ € N.
Then m _em _em (em)

P =7 = %0

n en n n'

The induced map o) therefore yields the desired isomorphism between N~'Z and Zo)-

Example 10. Let R be a commutative ring and a € R. Suppose we want to construct from R a ring in
which a is a unit. This would require inverting not only a, but also all of its positive powers. So a natural
candidate for such a ring would be R, = SR, where S = {1,a,a?,a%,...}. But we might also try to
construct polynomials in a~! over R. This we can achieve with the ring R[X]/(aX — 1). As one might
suspect, these two constructions yield isomorphic rings.

Let 1 denote the composite map R — R[X] — R[X]/(aX —1). Let n € N. Since aX = 1(mod aX — 1),
(a) is a unit. Therefore ¥(a™) = ¥(a)”™ is a unit for all n € N. By Theorem 3, there is a unique lift
¥ R, — R[X]/(aX — 1), given by QZ(Q%) = (b)y(a)~™. The natural map ¢s : R — R, induces a
homomorphism g : R[X] = R, [X ], which we compose with the evaluation £/, to yield a homomorphism
¢ : R[X]| = R,. For any >, b;X" € R[X] we have

(o) -Sh () -2

In particular,

~a 1 0

“LTITT

so that aX — 1 € kery. ¢ therefore induces a homomorphism @ : R[X]/(aX — 1) — R,, satisfying
D(f + (aX — 1)) = o(f). We will shows that 12 and @ are inverses.

Since ¥(a)(X + (aX — 1)) = (a+ (aX —1))(X + (aX —1)) =aX + (aX — 1) =1+ (aX — 1), ¢(a)"! =
X + (aX — 1), so that

plaX —1)

7 () = $OI@ ™ = (04 (@X =~ D)X + (X ~ D) =0X" + X - 1),

So, given any f(X)=>",b;X" € R[X], we have

@@¢g+mx_n»=wwﬁﬁw%§j$>:zﬁ(ﬁ):(Zpﬂﬁ+«m_n:f+wx_n

Hence 1 o 3 is the identity map on R[X]/(aX — 1). Likewise, for any L € R,, we have

voﬁ(al;) — BBX" 4 (aX — 1) = p(bX™) =

a

so that @ o TZ is also the identity, this time on R,. We conclude that 12; and P are inverse isomorphisms, so
that
R, = RIX]/(aX — 1),

as claimed.

Remark 16. Although the proof in Example 10 appears somewhat lengthy, it is actually rather straightfor-
ward. We simply constructed the “obvious” maps in each direction, and then checked that they inverted
one another.

Remark 17. Example 10 explains the isomorphism Z [§] = Z[X]/(2X — 1) that we encountered during

our discussion of algebraic integers, and provides the immediate generalization Z [1] = Z[X]/(aX — 1) for
nonzero a € Z.



4 Quotient Fields

The quotient field of a domain R plays a distinguished role among the (proper) localizations of R: it contains
(a copy of) R as well as (copies of) all of its proper localizations. We begin with a lemma.

Lemma 3. Let R be a commutative ring and let S C T C R be multiplicative sets. There is a commutative
diagram

SR .
s N ()
R T'R

prT

For all £ € SR, os1 (%) = <. If o is an embedding, then ¢s and ps T are also embeddings.

Proof. Any s € S belongs to T, and therefore ¢7(s) is a unit in 7-!R. Theorem 3 then guarantees the
existence of pgr = @r making (6) commute. If ¢p is an embedding, then T, and hence S, is proper.
Therefore pg is an embedding as well. That ¢g 7 is an embedding in this situation follows directly from
Theorem 3. O

Theorem 4. Let R be a domain with quotient field Q(R). If S C T C R are proper multiplicative sets (i.e.
0¢S,T), there is a commutative diagram of embeddings

in which @ . (%) =2 for all %

S

Proof. Let U = R\ {0}. Then S, T C U. Successively apply Lemma 3 to the pairs (S,T), (S,U) and (T,U)
to obtain g7, vso = wsu and pro = @ry. All maps are embeddings because S,T and U are proper.

The only thing to check is the commutativity of the “rightmost face” of the diagram, which is an immediate

consequence of the formula ¢, . (%) = % O

Corollary 1. The quotient field of a domain R naturally contains compatibly isomorphic copies of R and
all of R’s localizations.

Remark 18. One can actually be a bit more precise. Theorem 4 (almost) proves that
Q(R) =1im S~'R,
—
the limit being taken over the collection of proper multiplicative subsets of R, ordered by inclusion.

The quotient field of a domain R is unique in the sense that any field K containing R as a subring
contains a unique copy of Q(R). We will prove this in the following form.

Theorem 5. Let K be a field with subring R. Let F denote the set of subfields of K containing R and set

k=) F.

FeF

Then k is the unique subfield of K that is R-isomorphic to Q(R).



Proof. Let ¢ : R — k denote the inclusion map. Since k is a field, every nonzero element of R is a unit. By
Theorem 3 ¢ therefore induces i : Q(R) — k. Because i is injective, ¢ is an embedding. Let &’ denote the
image of 7. Then k' is a subfield of K, and for any r € R we have

r=i(r) =7o0¢y(r) €k

Hence k' € F and consequently k C k’. Since k' C k, this means k = k' so that 7 is an isomorphism.
Furthermore, for r € R and ¢ € Q(R) we have

so that ¢ is an R-isomorphism.

Suppose ¢ : Q(R) — K is any embedding over R. Then for any r € R we have

) =r(})r1=

so that R is contained in the image & of ¢. This again implies that k C k”. Therefore &' C k”. Now
consider the map ¢ =1~ oi: Q(R) — Q(R). Because ¢ is an R-homomorphism,

(@) =e (1)) =)= G e (D) -2

That is, ¢ is the identity map. So ) = o =10t ~toi=iand k" =k’ = k. O

Example 11. Let f(X) = X2+ pX + ¢ € Z[X] be irreducible (that is, p? — 4q is not a perfect square). Let
a € C be one of the roots of f. We have seen that

Zla) = {a+bala,b e Z}
is a subring of C. An identical proof shows that
Q(a) ={a+bala,beQ}

is also a subring of C. Let o’ € C denote the other root of f. Notice that this means a + o/ = —p and
ad’ = q. Given = a+ ba € Q(a), in C we have

1 a+ b/ a—-blp+a) a — pb

8 (a+ba)(a+ba’) a2 —pab+b2q  a? — pab+ b2q a2 —pab—i—qua

€ Q).

Therefore Q() is a field. It is easy to see that Q(«) is the smallest subfield of C containing Z[a]. By
Theorem 5, Q(«) is (isomorphic to) the quotient field of Z[a].

5 Ideals

We now turn to ideal theory in localizations of rings. Let R be a commutative ring with multiplicative subset
S. If ais an ideal in R, let
a
S~ la= {
S

If z,9 € S~'a, there are a,b € a and s,t € S so that x = S and y = % Then

aGa,SES}.

n —b  at —bs
xr — = — —_— =
y S t st

€S ta



since at —bs € a. If z = £ € SR, then
ca 1
zr=—¢€ S a
us
since ca € a. Therefore S~'a is an ideal in S™'R, which we will call the localization of a. Notice that the

kernel in equation (5) is the localization of an ideal.

Going the other direction, if b is an ideal in ST'R, then ' (b) is an ideal in R. We have a € ¢g'(b) if
and only if ¢ € b. Notice that for any s € S, if < € b, then § = § -2 € b. Thus ¢ € b if and only if ¢ € b
for some s € S. That is,

gosl(b):{aeR'(ﬂseS) (Zeb)} (8)

So ' (b) consists of all numerators of fractions in b. We claim that ' (b) is an ideal in R. Let a,b € 5" (b),

r € R. Then
ab_a by
1 1 17

since b is an ideal in ST'R. Hence a — b € ¢g'(b). Likewise,

ps(a—0b) =

again because b is an ideal, so that 7a € pg'(b). This proves our claim. We will call pg'(b) the numerator
ideal of b.

Let Z denote the set of ideals in R and let 7 denote the set of ideals in S~1R. We therefore have two
mappings:
.77, v: J—1I
4 and 1
a— S a b— g (b).
How are they related? Let a € a. Then ¢g(a) = ¢ € S~'a, so that a € ¢5'(S7ta). Thus a C pg'(S~la) =
U o ®(a). Similarly, if ¢ € b, then a € ¢g'(b), by (8). This immediately implies that ¢ € S~1pg'(b), and
we conclude that b C S™lpg"(b) = ® o U(b).

Only the second of these containments can be reversed in general. Let 2 € S~'¢pg"(b). Then z = ¢ for

some s € S and a € ¢g'(b), i.e. 2 ¢€b. Thusz =12 € b, and we obtain S~'pg(b) C b. We have now
proven our first result on ideals.

Lemma 4. Let R be a commutative ring, S C R a multiplicative set, a and ideal in R, and b an ideal in
S™IR. Then

1. a C pg'(Sa);

2. b=S"1pg'(b).

Corollary 2. Every ideal of S~'R has the form S™'a for some ideal a in R.
Proof. Given an ideal b in S™'R, a = ¢g'(b) works. O

What happens is we attempt to show that gogl(S’lu) C a? If a is a member of the left hand side, then
€ S~la. It’s tempting to conclude that a € a, but that’s not what membership in S~!a guarantees. To say

=l e

€ S~'a means there exist o’ € a and s € S so that § = %, or '(as—a') =0 for some s’ € S. This implies
ss'a = s'a’ € a. That is, the most we can say is that a multiple of a (by an element of S) belongs to a. In
order to make use of this condition we need to enforce additional hypotheses. What if a = p is prime and p
avoids S? Then ss’a € p implies a € p, as we had originally hoped, since this proves that (pgl(S ~1p) C p.
The theorem below is an immediate consequence of these computations.



Theorem 6. Let R be a commutative ring and S C R a multiplicative set. For any prime ideal p in R that
avoids S,
p=p5 ().

If p is a prime ideal in R avoiding a multiplicative subset S, and £ - % = ‘z—f € S~ !p, then there exist p € p
and u € S so that % = 2. So there is an s’ € S with s'(abu — pst) = 0, which implies abs'u = pss't € p.
Because p is prime and s’,u ¢ p, we must have a € p or b € p. Then ¢ or % belongs to S~1p. This almost
proves that S~!p is a prime ideal: we haven’t shown S~'p is actually proper. But Theorem 6 tells us this
has to be the case. If S~'p = SR, we’d then have p = p5' (S~ 'p) = pg' (S™'R) = R, which is impossible.
So S~'p is indeed proper, and is therefore prime.

If q is a prime in S™'R, then gagl(q) is a prime in R, simply because g is a homomorphism. The ideal
©5'(q) avoids S, for if s € SNpg'(q), then the unit 1 belongs to g, a contradiction. Lemma 4 and Theorem
6 now yield our final result.

Theorem 7. Let R be a commutative ring, let S C R be a multiplicative set, and let
Specg(R) = {p C R|p is a prime ideal and pN S = &}.
The maps p — S™'p and q — ©5'(q) are inverse bijections between Specg(R) and Spec(S™'R).

Example 12. With everything as above, fix a prime B, let S = R\'P and set Ry = S™. Let Py = S,
which is a prime ideal in Ry by Theorem 7. If ¢ & Pz, then a € PB. This means that a € S and hence that
2 is a unit in Ry. In other words, every element in the complement of By is a unit. Since By is proper,
the units of Ry must lie outside of Py Thus Py = Ry \ Ry, proving that Ry is a local ring with unique
maximal ideal Bgz. Every other prime in Ry must correspond to a prime in R avoiding R\ 3, by Theorem
7. Any such prime must lie inside of 9B. So every prime in Ry can be written uniquely the form S~!'p for

some prime p C B. These results are worth recording.

Proposition 1. Let R be a commutative ring and let B be a prime ideal in R. Then Ry is a local ring with
unique mazimal ideal *Pop. The primes in Ry are in one-to-one correspondence with the primes contained
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