
Rings of Fractions

R. C. Daileda

1 Multiplicative Sets

Let R be a commutative ring. A subset S ⊂ R is called multiplicative if: (i) 1 ∈ S and (ii) for all s, t ∈ S, one
has st ∈ S. We will call a multiplicative set S proper if S does not contain 0 or zero divisors; equivalently, if
s ∈ S, a ∈ R and sa = 0, then a = 0.

Remark 1. Not all authors require a multiplicative set S to satisfy 1 ∈ S. However, for the purpose of
constructing fractions this can be assumed WLOG.

Remark 2. The term proper is the author’s. Although multiplicative sets that avoid 0 and avoid zero divisors
occur frequently in the context of fractions, these sets inconveniently do not seem to have a dedicated
adjective.

Example 1. For any a ∈ R, S = {1, a, a2, a3, . . .} is multiplicative.

Example 2. If p ⊂ R is a prime ideal, then S = R \ p is a multiplicative set.

Example 3. If R is a domain, then R \ {0} is a proper multiplicative set. Any multiplicative S ⊂ R \ {0}
is also proper.

Theorem 1. Let R be a commutative ring, S ⊂ R a multiplicative set, and a ⊂ R an ideal. If S ∩ a = ∅ (S
avoids a), then there exists a prime ideal p containing a and avoiding S.

Before proving Theorem 1, we remark that it can be rephrased as follows. If S is a multiplicative set
contained in R \ a for some ideal a, then S is contained in R \ p for some prime ideal p. This shows that the
multiplicative sets R \ p are in some sense the “maximal” multiplicative sets.

Proof of Theorem 1 (Sketch). Apply Zorn’s Lemma to the (nonempty) set of ideals avoiding S to produce
an ideal p which is maximal with respect to avoiding S. We claim that any such p must be prime. To see
this, let ab ∈ p and suppose a, b 6∈ p. Then p+(a) and p+(b) must both intersect S. Since S is multiplicative,
this implies that (p + (a))(p + (b)) intersects S. But (p + (a))(p + (b)) = p2 + (a)p + (b)p + (ab) ⊂ p, which
means p intersects S, a contradiction. So either a ∈ p or b ∈ p, and p is therefore prime.

Remark 3. If 0 6∈ S, then S avoids (0). Theorem 1 then implies that S is contained in the complement of a
prime ideal.

Remark 4. Although every multiplicative set avoiding 0 is contained in the complement of a prime, not every
such set is actually equal to a prime complement. For example, the simple multiplicative set {1} in Z is
contained in the complement every prime ideal, but is equal to none of them.

2 Fractions

Throughout this section we fix a commutative ring R and a multiplicative set S ⊂ R. For (a, s), (b, t) ∈ R×S
define

(a, s) ∼ (b, t) ⇔ (∃s′ ∈ S)(s′(at− bs) = 0).
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Remark 5. Notice that if at− bs = 0, then (a, s) ∼ (b, t), since any s′ ∈ S will satisfy s′(at− bs) = 0.

Remark 6. If S is proper, then (a, s) ∼ (b, t) if and only if at− bs = 0.

Lemma 1. ∼ is an equivalence relation on R× S.

Proof. Reflexivity. Since as− as = 0, (a, s) ∼ (a, s).

Symmetry. If (a, s) ∼ (b, t), then s′(at− bs) = 0 for some s′ ∈ S. Negating we obtain s′(bs− at) = 0, so that
(b, t) ∼ (a, s) as well.

Transitivity. Suppose (a, s) ∼ (b, t) and (b, t) ∼ (c, u). Then there are s′, s′′ ∈ S so that s′(at− bs) = 0 and
s′′(bu−ct) = 0. Multiply the first equality by s′′u and the second by ss′. This yields s′s′′(atu−bsu) = 0 and
s′s′′(bsu−cst) = 0. Adding these we find that s′s′′(atu−cst) = s′s′′t(au−cs) = 0. Since S is multiplicative,
s′s′′t ∈ S. Hence (a, s) ∼ (c, u).

Remark 7. The equivalence ∼ is intended to mimic the relation on Z × N used to construct the rational
numbers. The mysterious presence of s′ in the “cross product” s′(at − bs) has to do with the potential
presence of zero divisors in S and will be explained later.

For (a, s) ∈ R× S, let the fraction a
s denote the equivalence class of (a, s) under ∼. That is,

a

s
= {(b, t) ∈ R× S | (b, t) ∼ (a, s)}.

We call a the numerator and s the denominator of a
s . We will denote the quotient space (R × S)/∼ of all

fractions by S−1R.

Remark 8. If s, t ∈ S and a ∈ R, then at
st = a

s , since 1 · (ats − ast) = 0. Thus, we can cancel across the
fraction bar as usual.

Remark 9. If s, t ∈ S, then both s
t and t

s are members of S−1R.

Remark 10. If 0 ∈ S, then S−1R has a single element (exercise).

For a
s ,

b
t ∈ S

−1R, define

a

s
+
b

t
=
at+ bs

st
(1)

a

s
· b
t

=
ab

st
. (2)

We claim that these operations are well-defined and make S−1R into a commutative ring.

Well-defined. Suppose a
s = a′

s′ and b
t = b′

t′ in S−1R. Then we can find s1, s2 ∈ S so that s1(as′ − a′s) =
s2(bt′ − b′t) = 0. Then s1s2 ∈ S and

s1s2((at+ bs)s′t′ − (a′t′ + b′s′)st) = s1s2((as′ − a′s)tt′ + (bt′ − b′t)ss′)
= s2s1(as′ − a′s)tt′ + s1s2(bt′ − b′t)ss′

= s2 · 0 · tt′ + s1 · 0 · ss′ = 0.

Hence at+bs
st = a′t′+b′s′

s′t′ , and addition is well-defined.

As for multiplication, we have

s1s2(abs′t′ − a′b′st) = s1s2(abs′t′ − ab′s′t+ ab′s′t− a′b′st)
= s1s2(as′(bt′ − b′t) + b′t(as′ − a′s))
= as′s1s2(bt′ − b′t) + b′ts2s1(as′ − a′s)
= as′s1 · 0 + b′ts2 · 0 = 0,
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which proves that ab
st = a′b′

s′t′ . Therefore multiplication is also well-defined.

(S−1R,+) is an abelian group. Let a
s ,

b
t ,

c
u ∈ S

−1R. Then

a

s
+

(
b

t
+
c

u

)
=
a

s
+
bu+ ct

tu
=
atu+ (bu+ ct)s

stu
=

(at+ bs)u+ cst

stu
=
at+ bs

st
+
c

u
=

(
a

s
+
b

t

)
+
c

u
,

so that addition of fractions is associative. It is clearly commutative. The element 0
1 is the additive identity,

since
0

1
+
a

s
=

0s+ 1a

1s
=
a

s
.

And the inverse of a
s is −as , since

a

s
+
−a
s

=
as− as
s2

=
0

s2
=

0

1
.

(S−1R, ·) is a commutative monoid. Multiplication of fractions is obviously commutative, and it is easily
seen to be associative:

a

s

(
b

t
· c
u

)
=
a

s
· bc
tu

=
abc

stu
=
ab

st
· c
u

=

(
a

s
· b
t

)
c

t
.

The identity element is 1
1 since

1

1
· a
s

=
1a

1s
=
a

s
.

Distributivity. Because multiplication of fractions is commutative, we only need to check distributivity on
one side. Indeed, we have

a

s

(
b

t
+
c

u

)
=
a

s
· bu+ ct

tu
=
a(bu+ ct)

stu
=
abu+ act

stu

=
(abu)(stu) + (act)(stu)

(stu)2
=
abu

stu
+
act

stu

=
ab

st
+
ac

su
=
a

s
· b
t

+
a

s
· c
u
.

Altogether, we have now proven the following result.

Theorem 2. Let R be a commutative ring and S ⊂ R a multiplicative set. Under addition and multiplication
of fractions as given by (1) and (2), S−1R is a commutative ring, called the localization of R at (or by) S.

Remark 11. The ring S−1R is also called a ring of fractions.

Remark 12. Observe that for any s ∈ S, 0
1 = 0

s and 1
1 = s

s .

Remark 13. If two fractions have the same denominator, we can add them as usual:

a

s
+
b

s
=
as+ bs

s2
=

(a+ b)s

s2
=
a+ b

s
.

Example 4. The set N is multiplicative in Z. The ring N−1Z is a field (see below). It is usually denoted
by Q and is called the field of rational numbers.

Example 5. If p ⊂ R is a prime ideal and S = R \ p, the localization S−1R is usually denoted Rp, and by
abuse of notation is called the localization of R at p, despite the fact that we are localizing at S.

Example 6. If R is a domain and p = (0) above, then every nonzero element of R(0) is a unit. For if a ∈ R
and a 6= 0, then a ∈ S. Hence for any s ∈ S, we have a

s ,
s
a ∈ R(0) and a

s
s
a = as

as = 1
1 . It follows that R(0) is a

field, the quotient field of R.
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Example 7. Let R = Z/6Z and S = {1, 2, 22, 23, . . .} = {1, 2, 4}. Notice that for any a ∈ R, in S−1R we
have

a

2
=

4a

4 · 2
=

4a

2
=

2a

1
⇒ a

2j
=

2ja

1
,

so that every fraction in S−1R has the form a
1 . Moreover,

3

1
=

3 · 2
1 · 2

=
0

2
=

0

1
,

which implies 4
1 = 1

1 and 5
1 = 2

1 . This means S−1R =
{

0
1 ,

1
1 ,

2
1

}
. Because 2

1 6=
0
1 , this shows that S−1R has

exactly 3 elements and must therefore be isomorphic to Z/3Z. We’ll have a less ad hoc explanation for this
shortly.

Remark 14. We are now in a position to say a few words about the extra s′ appearing in the definition of
∼. Suppose we localize R at S and s ∈ S is a zero divisor. This means there is a nonzero a ∈ R so that
sa = 0. This translates to the equation s

1 ·
a
1 = 0

1 in S−1R. But in S−1R the fraction s
1 is a unit, so we can

cancel it to get a
1 = 0

1 . But a is not zero, so the usual notion of equivalence of fractions won’t allow this to
happen. Because of the “correction” factor we’ve included, however, a1 = 0

1 follows from sa = 0.

3 The Universal Property

Let R be a commutative ring and let S ⊂ R be a multiplicative set. The localization S−1R comes equipped
with a natural map ϕS : R → S−1R given by ϕS(a) = a

1 . ϕS is a homomorphism by Remark 13, and for
any s ∈ S, ϕS(s) = s

1 is a unit in S−1R, with inverse 1
s . That is, ϕ(S) ⊂ (S−1R)×. In other words, in the

localization S−1R the elements of S all become units. When S is proper, the following lemma shows that
we can regard S−1R as an extension of R, one in which every element of S becomes invertible.

Lemma 2. Let R be a commutative ring with multiplicative subset S. The natural map ϕS is an embedding
if and only if S is proper.

Proof. Suppose S is proper and ϕS(a) = a
1 = 0

1 . Then a = 0, since S contains no zero divisors. Hence ϕS
is injective. Conversely, suppose ϕS is injective, and let a ∈ R, s ∈ S satisfy sa = 0. Then 0 = ϕS(sa) =
ϕS(s)ϕS(a). Since ϕS(s) is a unit, we must have ϕS(a) = 0. As ϕS is injective, this implies a = 0. Therefore
S is proper.

The so-called universal property of localization characterizes S−1R in terms of ϕS . It is the main tool
for constructing maps out of localizations.

Theorem 3 (Universal Property of Localization). Let R be a commutative ring and S ⊂ R a multiplicative
set. If ψ : R→ R′ is a ring homomorphism satisfying ψ(R) ⊂ (R′)×, then ψ lifts to a unique homomorphism

ψ̂ : S−1R→ R′ making the diagram

S−1R
ψ̂

""
R

ϕS

OO

ψ
// R′

(3)

commute. If ψ is an embedding, so is ψ̂.

Proof. Assuming ψ̂ exists, for any s ∈ S we must have

ψ̂

(
1

s

)
= ψ̂

((s
1

)−1)
= ψ̂

(s
1

)−1
= ψ̂ ◦ ϕS(s)−1 = ψ(s)−1.
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Therefore if a ∈ R, then

ψ̂
(a
s

)
= ψ̂

(
a

1
· 1

s

)
= ψ̂

(a
1

)
ψ̂

(
1

s

)
= ψ̂ ◦ ϕS(a)ψ(s)−1 = ψ(a)ψ(s)−1. (4)

This proves that if ψ̂ exists, then it is unique, since it must be given by (4). To prove existence it suffices to
show that the formula (4) yields a well-defined homomorphism with domain S−1R.

So suppose a
s ,

b
t ∈ S

−1R satisfy a
s = b

t . Then there is an s′ ∈ S so that s′(at − bs) = 0. Applying ψ we
obtain ψ(s′)(ψ(a)ψ(t)−ψ(b)ψ(s)) = 0. Since ψ(s′) is a unit in R′, this implies ψ(a)ψ(t) = ψ(b)ψ(s). However,
both ψ(s) and ψ(t) are units in R′ as well, and cancellation then yields ψ(a)ψ(s)−1 = ψ(b)ψ(t)−1. This shows

that the rule ψ̂
(
a
s

)
= ψ(a)ψ(s)−1 is well-defined. It is a homomorphism since ψ̂( 1

1 ) = ψ(1)ψ(1)−1 = 1 ·1 = 1

and for any a
s ,

b
t ∈ S

−1R:

ψ̂

(
a

s
+
b

t

)
= ψ̂

(
at+ bs

st

)
= ψ(at+ bs)ψ(st)−1

= ψ(a)ψ(t)ψ(s)−1ψ(t)−1 + ψ(b)ψ(s)ψ(s)−1ψ(t)−1

= ψ(a)ψ(s)−1 + ψ(b)ψ(t)−1

= ψ̂
(a
s

)
+ ψ̂

(
b

t

)
,

ψ̂

(
a

s
· b
t

)
= ψ̂

(
ab

st

)
= ψ(ab)ψ(st)−1

= ψ(a)ψ(s)−1ψ(b)ψ(t)−1

= ψ̂
(a
s

)
ψ̂

(
b

t

)
.

Finally, let a
s ∈ S

−1R. Since ψ(s)ψ̂
(
a
s

)
= ψ(a) and ψ(s) ∈ (R′)×, we find that a

s ∈ ker ψ̂ is and only if
a ∈ kerψ. That is

ker ψ̂ = S−1 kerψ =

{
a

s

∣∣∣∣ a ∈ kerψ, s ∈ S
}
. (5)

Therefore ψ̂ will be injective whenever ψ is. This completes the proof.

Remark 15. The explicit formula (4) for ψ̂ is not given in the statement of Theorem 3 because it can
be deduced from the diagram (3). Nonetheless, the rule (4) derived in the course of the proof is worth
remembering.

Example 8. Recall Example 7, in which R = Z/6Z and S = {1, 2, 22, . . .} = {1, 2, 4}. Let π : Z/6Z→ Z/3Z
be the natural surjection. Since π(2) = 2 and π(4) = 1 are units in Z/3Z, Theorem 3 implies there is a
unique lift π̂ : S−1R→ Z/3Z. According to (5), the kernel of π̂ consists of the fractions 0

1 and 3
s , s ∈ S. But

3

s
=

6

2s
=

0

1
,

which means that ker π̂ =
{

0
1

}
, i.e. π̂ is an embedding. Since π is surjective, so is π̂. π̂ therefore provides an

isomorphism S−1R ∼= Z/3Z.

Example 9. The rational numbers are traditionally defined to be N−1Z. But since Z is a domain, another
candidate is the quotient field Z(0). Which option is the “right” way to define Q? Both: they’re isomorphic!
Under the natural map ϕ(0) : Z→ Z(0), a natural number n is carried to n

1 , which is a unit simply because
n 6= 0. Theorem 3 lifts ϕ(0) to ϕ̂(0) : N−1Z→ Z(0), given by

m

n
7→ m

1

(n
1

)−1
=
m

n
.
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Because Z is a domain, Z \ (0) is proper, so Lemma 2 tells us ϕ(0) is an embedding. Therefore ϕ̂(0) is an
embedding, too. ϕ̂(0) is also surjective. To see this, let m

n ∈ Z(0). Write n = εn′ with ε ∈ {±1} and n′ ∈ N.
Then

m

n
=
εm

εn
=
εm

n′
= ϕ̂(0)

(εm
n′

)
.

The induced map ϕ̂(0) therefore yields the desired isomorphism between N−1Z and Z(0).

Example 10. Let R be a commutative ring and a ∈ R. Suppose we want to construct from R a ring in
which a is a unit. This would require inverting not only a, but also all of its positive powers. So a natural
candidate for such a ring would be Ra = S−1R, where S = {1, a, a2, a3, . . .}. But we might also try to
construct polynomials in a−1 over R. This we can achieve with the ring R[X]/(aX − 1). As one might
suspect, these two constructions yield isomorphic rings.

Let ψ denote the composite map R→ R[X]→ R[X]/(aX − 1). Let n ∈ N. Since aX ≡ 1(mod aX − 1),
ψ(a) is a unit. Therefore ψ(an) = ψ(a)n is a unit for all n ∈ N. By Theorem 3, there is a unique lift

ψ̂ : Ra → R[X]/(aX − 1), given by ψ̂
(
b
an

)
= ψ(b)ψ(a)−n. The natural map ϕS : R → Ra induces a

homomorphism ϕ̂S : R[X]→ Ra[X], which we compose with the evaluation E1/a to yield a homomorphism
ϕ : R[X]→ Ra. For any

∑
i biX

i ∈ R[X] we have

ϕ

(∑
i

biX
i

)
=
∑
i

bi
1

(
1

a

)i
=
∑
i

bi
ai
.

In particular,

ϕ(aX − 1) =
a

a
− 1

1
=

0

1
,

so that aX − 1 ∈ kerϕ. ϕ therefore induces a homomorphism ϕ : R[X]/(aX − 1) → Ra, satisfying

ϕ(f + (aX − 1)) = ϕ(f). We will shows that ψ̂ and ϕ are inverses.

Since ψ(a)(X + (aX − 1)) = (a+ (aX − 1))(X + (aX − 1)) = aX + (aX − 1) = 1 + (aX − 1), ψ(a)−1 =
X + (aX − 1), so that

ψ̂

(
b

an

)
= ψ(b)ψ(a)−n = (b+ (aX − 1))(X + (aX − 1))n = bXn + (aX − 1).

So, given any f(X) =
∑
i biX

i ∈ R[X], we have

ψ̂ ◦ ϕ (f + (aX − 1)) = ψ̂(ϕ(f)) = ψ̂

(∑
i

bi
ai

)
=
∑
i

ψ̂

(
bi
ai

)
=

(∑
i

biX
i

)
+ (aX − 1) = f + (aX − 1).

Hence ψ̂ ◦ ϕ is the identity map on R[X]/(aX − 1). Likewise, for any b
an ∈ Ra, we have

ϕ ◦ ψ̂
(
b

an

)
= ϕ(bXn + (aX − 1)) = ϕ(bXn) =

b

an
,

so that ϕ ◦ ψ̂ is also the identity, this time on Ra. We conclude that ψ̂ and ϕ are inverse isomorphisms, so
that

Ra ∼= R[X]/(aX − 1),

as claimed.

Remark 16. Although the proof in Example 10 appears somewhat lengthy, it is actually rather straightfor-
ward. We simply constructed the “obvious” maps in each direction, and then checked that they inverted
one another.

Remark 17. Example 10 explains the isomorphism Z
[
1
2

] ∼= Z[X]/(2X − 1) that we encountered during

our discussion of algebraic integers, and provides the immediate generalization Z
[
1
a

] ∼= Z[X]/(aX − 1) for
nonzero a ∈ Z.
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4 Quotient Fields

The quotient field of a domain R plays a distinguished role among the (proper) localizations of R: it contains
(a copy of) R as well as (copies of) all of its proper localizations. We begin with a lemma.

Lemma 3. Let R be a commutative ring and let S ⊂ T ⊂ R be multiplicative sets. There is a commutative
diagram

S−1R
ϕS,T

$$
R

ϕS

OO

ϕT

// T−1R

.

(6)

For all a
s ∈ S

−1R, ϕS,T
(
a
s

)
= a

s . If ϕT is an embedding, then ϕS and ϕS,T are also embeddings.

Proof. Any s ∈ S belongs to T , and therefore ϕT (s) is a unit in T−1R. Theorem 3 then guarantees the
existence of ϕS,T = ϕ̂T making (6) commute. If ϕT is an embedding, then T , and hence S, is proper.
Therefore ϕS is an embedding as well. That ϕS,T is an embedding in this situation follows directly from
Theorem 3.

Theorem 4. Let R be a domain with quotient field Q(R). If S ⊂ T ⊂ R are proper multiplicative sets (i.e.
0 6∈ S, T ), there is a commutative diagram of embeddings

Q(R)

T−1R

ϕT,0
kk

R

ϕT

77

ϕS

//

ϕ0

OO

S−1R

ϕS,T

GGϕS,0

__

(7)

in which ϕ∗,∗
(
a
s

)
= a

s for all a
s .

Proof. Let U = R \ {0}. Then S, T ⊂ U . Successively apply Lemma 3 to the pairs (S, T ), (S,U) and (T,U)
to obtain ϕS,T , ϕS,0 = ϕS,U and ϕT,0 = ϕT,U . All maps are embeddings because S, T and U are proper.
The only thing to check is the commutativity of the “rightmost face” of the diagram, which is an immediate
consequence of the formula ϕ∗,∗

(
a
s

)
= a

s .

Corollary 1. The quotient field of a domain R naturally contains compatibly isomorphic copies of R and
all of R’s localizations.

Remark 18. One can actually be a bit more precise. Theorem 4 (almost) proves that

Q(R) ∼= lim
−→

S−1R,

the limit being taken over the collection of proper multiplicative subsets of R, ordered by inclusion.

The quotient field of a domain R is unique in the sense that any field K containing R as a subring
contains a unique copy of Q(R). We will prove this in the following form.

Theorem 5. Let K be a field with subring R. Let F denote the set of subfields of K containing R and set

k =
⋂
F∈F

F.

Then k is the unique subfield of K that is R-isomorphic to Q(R).
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Proof. Let i : R → k denote the inclusion map. Since k is a field, every nonzero element of R is a unit. By
Theorem 3 i therefore induces î : Q(R) → k. Because i is injective, î is an embedding. Let k′ denote the

image of î. Then k′ is a subfield of K, and for any r ∈ R we have

r = i(r) = î ◦ ϕ0(r) ∈ k′.

Hence k′ ∈ F and consequently k ⊂ k′. Since k′ ⊂ k, this means k = k′ so that î is an isomorphism.
Furthermore, for r ∈ R and a

s ∈ Q(R) we have

î
(r

1
· a
s

)
= î
(ra
s

)
= ras−1 = r · î

(a
s

)
,

so that î is an R-isomorphism.

Suppose ψ : Q(R)→ K is any embedding over R. Then for any r ∈ R we have

ψ
(r

1

)
= rψ

(
1

1

)
= r · 1 = r,

so that R is contained in the image k′′ of ψ. This again implies that k ⊂ k′′. Therefore k′ ⊂ k′′. Now
consider the map ϕ = ψ−1 ◦ î : Q(R)→ Q(R). Because ϕ is an R-homomorphism,

ϕ
(a
s

)
= ϕ

(
a

1

(s
1

)−1)
=
a

1
· ϕ
(s

1

)−1
=
a

1

(
s

1
· ϕ
(

1

1

))−1
=
a

s
.

That is, ϕ is the identity map. So ψ = ψ ◦ ϕ = ψ ◦ ψ−1 ◦ î = î and k′′ = k′ = k.

Example 11. Let f(X) = X2 + pX + q ∈ Z[X] be irreducible (that is, p2− 4q is not a perfect square). Let
α ∈ C be one of the roots of f . We have seen that

Z[α] = {a+ bα | a, b ∈ Z}

is a subring of C. An identical proof shows that

Q(α) = {a+ bα | a, b ∈ Q}

is also a subring of C. Let α′ ∈ C denote the other root of f . Notice that this means α + α′ = −p and
αα′ = q. Given β = a+ bα ∈ Q(α), in C we have

1

β
=

a+ bα′

(a+ bα)(a+ bα′)
=

a− b(p+ α)

a2 − pab+ b2q
=

a− pb
a2 − pab+ b2q

− b

a2 − pab+ b2q
α ∈ Q(α).

Therefore Q(α) is a field. It is easy to see that Q(α) is the smallest subfield of C containing Z[α]. By
Theorem 5, Q(α) is (isomorphic to) the quotient field of Z[α].

5 Ideals

We now turn to ideal theory in localizations of rings. Let R be a commutative ring with multiplicative subset
S. If a is an ideal in R, let

S−1a =

{
a

s

∣∣∣∣ a ∈ a, s ∈ S
}
.

If x, y ∈ S−1a, there are a, b ∈ a and s, t ∈ S so that x = a
s and y = b

t . Then

x− y =
a

s
+
−b
t

=
at− bs
st

∈ S−1a
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since at− bs ∈ a. If z = c
u ∈ S

−1R, then

zx =
ca

us
∈ S−1a

since ca ∈ a. Therefore S−1a is an ideal in S−1R, which we will call the localization of a. Notice that the
kernel in equation (5) is the localization of an ideal.

Going the other direction, if b is an ideal in S−1R, then ϕ−1S (b) is an ideal in R. We have a ∈ ϕ−1S (b) if
and only if a

1 ∈ b. Notice that for any s ∈ S, if a
s ∈ b, then a

1 = s
1 ·

a
s ∈ b. Thus a

1 ∈ b if and only if a
s ∈ b

for some s ∈ S. That is,

ϕ−1S (b) =

{
a ∈ R

∣∣∣∣ (∃s ∈ S)
(a
s
∈ b
)}

. (8)

So ϕ−1S (b) consists of all numerators of fractions in b. We claim that ϕ−1S (b) is an ideal in R. Let a, b ∈ ϕ−1S (b),
r ∈ R. Then

ϕS(a− b) =
a− b

1
=
a

1
− b

1
∈ b,

since b is an ideal in S−1R. Hence a− b ∈ ϕ−1S (b). Likewise,

ϕS(ra) =
ra

1
=
r

1
· a

1
∈ b,

again because b is an ideal, so that ra ∈ ϕ−1S (b). This proves our claim. We will call ϕ−1S (b) the numerator
ideal of b.

Let I denote the set of ideals in R and let J denote the set of ideals in S−1R. We therefore have two
mappings:

Φ : I → J ,
a 7→ S−1a

and
Ψ : J → I,

b 7→ ϕ−1S (b).

How are they related? Let a ∈ a. Then ϕS(a) = a
1 ∈ S

−1a, so that a ∈ ϕ−1S (S−1a). Thus a ⊂ ϕ−1S (S−1a) =

Ψ ◦ Φ(a). Similarly, if a
s ∈ b, then a ∈ ϕ−1S (b), by (8). This immediately implies that a

s ∈ S
−1ϕ−1S (b), and

we conclude that b ⊂ S−1ϕ−1S (b) = Φ ◦Ψ(b).

Only the second of these containments can be reversed in general. Let x ∈ S−1ϕ−1S (b). Then x = a
s for

some s ∈ S and a ∈ ϕ−1S (b), i.e. a
1 ∈ b. Thus x = 1

s ·
a
1 ∈ b, and we obtain S−1ϕS(b) ⊂ b. We have now

proven our first result on ideals.

Lemma 4. Let R be a commutative ring, S ⊂ R a multiplicative set, a and ideal in R, and b an ideal in
S−1R. Then

1. a ⊂ ϕ−1S (S−1a);

2. b = S−1ϕ−1S (b).

Corollary 2. Every ideal of S−1R has the form S−1a for some ideal a in R.

Proof. Given an ideal b in S−1R, a = ϕ−1S (b) works.

What happens is we attempt to show that ϕ−1S (S−1a) ⊂ a? If a is a member of the left hand side, then
a
1 ∈ S

−1a. It’s tempting to conclude that a ∈ a, but that’s not what membership in S−1a guarantees. To say
a
1 ∈ S

−1a means there exist a′ ∈ a and s ∈ S so that a
1 = a′

s , or s′(as−a′) = 0 for some s′ ∈ S. This implies
ss′a = s′a′ ∈ a. That is, the most we can say is that a multiple of a (by an element of S) belongs to a. In
order to make use of this condition we need to enforce additional hypotheses. What if a = p is prime and p
avoids S? Then ss′a ∈ p implies a ∈ p, as we had originally hoped, since this proves that ϕ−1S (S−1p) ⊂ p.
The theorem below is an immediate consequence of these computations.
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Theorem 6. Let R be a commutative ring and S ⊂ R a multiplicative set. For any prime ideal p in R that
avoids S,

p = ϕ−1S (S−1p).

If p is a prime ideal in R avoiding a multiplicative subset S, and a
s ·

b
t = ab

st ∈ S
−1p, then there exist p ∈ p

and u ∈ S so that ab
st = p

u . So there is an s′ ∈ S with s′(abu − pst) = 0, which implies abs′u = pss′t ∈ p.

Because p is prime and s′, u 6∈ p, we must have a ∈ p or b ∈ p. Then a
s or b

t belongs to S−1p. This almost
proves that S−1p is a prime ideal: we haven’t shown S−1p is actually proper. But Theorem 6 tells us this
has to be the case. If S−1p = S−1R, we’d then have p = ϕ−1S (S−1p) = ϕ−1S (S−1R) = R, which is impossible.
So S−1p is indeed proper, and is therefore prime.

If q is a prime in S−1R, then ϕ−1S (q) is a prime in R, simply because ϕS is a homomorphism. The ideal
ϕ−1S (q) avoids S, for if s ∈ S ∩ϕ−1S (q), then the unit s

1 belongs to q, a contradiction. Lemma 4 and Theorem
6 now yield our final result.

Theorem 7. Let R be a commutative ring, let S ⊂ R be a multiplicative set, and let

SpecS(R) = {p ⊂ R | p is a prime ideal and p ∩ S = ∅}.

The maps p 7→ S−1p and q 7→ ϕ−1S (q) are inverse bijections between SpecS(R) and Spec(S−1R).

Example 12. With everything as above, fix a prime P, let S = R\P and set RP = S−1P. Let PP = S−1P,
which is a prime ideal in RP by Theorem 7. If a

s 6∈ PP, then a 6∈ P. This means that a ∈ S and hence that
a
s is a unit in RP. In other words, every element in the complement of PP is a unit. Since PP is proper,

the units of RP must lie outside of PP. Thus PP = RP \R×P, proving that RP is a local ring with unique
maximal ideal PP. Every other prime in RP must correspond to a prime in R avoiding R \P, by Theorem
7. Any such prime must lie inside of P. So every prime in RP can be written uniquely the form S−1p for
some prime p ⊂ P. These results are worth recording.

Proposition 1. Let R be a commutative ring and let P be a prime ideal in R. Then RP is a local ring with
unique maximal ideal PP. The primes in RP are in one-to-one correspondence with the primes contained
in P.
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