GCDs and Gauss’ Lemma

R. C. Daileda

1 GCD Domains

Let R be a domain and S C R. We say ¢ € R is a common divisor of S if ¢|s for every s € S. Equivalently,
S C (c) or (S) C (c). We say a common divisor d is a greatest common divisor (GCD) of S if every common
divisor ¢ of S satisfies c|d. That is, d is a GCD of S if and only if (d) is the least element of the set

{(e)[ce R, (S) C (o)}, (1)

provided the least element exists. When it exists, the GCD of S is only defined up to association: the
GCDs of S are the generators of the least element of (1). We will write a & b to indicate that a,b € R are
associates. In this case their common equivalence class is aR*. The association classes form a commutative
multiplicative monoid under the operation (aR*)(bR*) = abR* (see the appendix). Let gcd S denote the
association class consisting of the GCDs of S. Thus, the statement “d is a GCD of S” is equivalent to
d € gcd S. A domain R is called a GCD domain if every finite subset of R has a GCD.

Suppose that R is a GCD domain and d is a GCD for aq, as, ..., a,, € R. Write a; = db; for each i, with
b € R. If ¢ € R and c|b; for all ¢, then cd|a; for all ¢. This means cd|d and hence ¢|1, so that ¢ is a unit. It
follows that 1 is a GCD for the a; and hence ged{a;} = R*.

Example 1.

a. In Z, ged(49,21) = {£7}. In Z[X], ged(2, X) = {£1}. Notice that in the first case we have (49,21) =
(7), while in the second (2,X) # (1) = Z[X].

b. Every PID R is a GCD domain. Given any S C R, (S) = (d) for some d € R, and hence ged S = dR*.
c. Every Bézout domain R is a GCD domain for similar reasons.

d. Every UFD is a GCD domain. See section 3.

e. Let F be a field. The monoid ring F[X;Qg] is an GCD domain but is not a UFD.

f. Every GCD domain is an AP domain,. See Theorem 1.

Remark 1.

a. There are now two different notions of the GCD of S: (i) the the smallest ideal containing S; (ii) (the
generators of) the smallest principal ideal containing S. These need not be the same! Take R = Z[X]
and S = {2, X}. The ideal-theoretic GCD is the proper ideal (2,X) = {f € Z[X]]| f(0) even}, while
the element-wise GCDs are {£1}. The reason for the distinction here (and in general) is that .S does
not generate a principal ideal.

b. Consider R as a subring of its quotient field. If a,b € R, b # 0 and b|a, then there is a unique ¢ € R

so that bc = a. We call ¢ the factor or divisor complementary to b. We can use fractions to help us
represent it. If we embed R in its quotient field, bc = a becomes % = ¢, which is equivalent to { = 7.
When bla in R we will therefore write § to denote the divisor complementary to b.

Lemma 1. Let R be a domain and S,T C R.



1. If c € R is nonzero, S C (c) and ged S ewists, then ged(S/c) = ngS'

2. For any c in R, ged(eS) = ¢ - ged S, provided ged(eS) exists.
3. ged(SUT) =ged(SUgedT), provided the GCDs exist.

Proof. 1. Let d € ged S. Then c|d by definition. So S C (d) implies S/c C (2). If S/c C (e), then S C (ce)
so that (d) C (ce) and hence (%) C (e). This proves that ged(S/c) = dRX = & dS

2. If ¢ = 0 there is nothing to prove. Otherwise, if ged(cS) exists, then since ¢S C (c), the first part
implies
S d(cS
ged S = ged (c ) = ged(eS) = c¢-ged S = ged(ceS).
c

C

3. For any d € R, T C (d) if and only if gcdT C (d). So

SUT c(d)< Sc(d)andT C (d)
< S C(d) and gedT C (d)
& SUgedT C (d).

The result follows.

Lemma 2. Let R be a GCD domain, let c € R and let S,T C R be finite. Then
ged(SUcT) =ged(SUc-ged(SUT)).

Proof. Repeatedly apply parts 2 and 3 of Lemma 1:

ged(S U eT) = ged(ged(S) U cel)

= ged(ged(S UceS) U cT)

= ged(S U eSUged(eT))

=ged(SUeSUc-ged(T))

= ged(S Uged(eSUc-ged(T)))

=ged(SUc-ged(SUged(T)))
(

=ged(SUc-ged(SUT)).

Corollary 1. Let R be a GCD domain, a,b,c € R. If ged(a,b) = R*, then ged(a, be) = ged(a, ¢).

Proof. Apply Lemma 2 with S = {a} and T = {b}. O
Corollary 2. Let R be a GCD domain, a,b,c € R. If ged(a,b) = ged(a,c) = R*, then ged(a,be) = R*

Under the stronger hypothesis that R is a Bézout domain, Corollaries 1 and 2 have dramatically simpler
proofs. The examples of GCDs domains that we have seen so far are all AP domains. Corollary 2 can be
used to show that there’s a reason for this.

Theorem 1. Every GCD domain is an AP domain.

Proof. Let R be a GCD domain and suppose a € R is irreducible. Suppose b,¢ € R and a|bc. Then
ged(a,be) = aR* # R*. By Corollary 2, ged(a,b) # R* or ged(a,c) # R*. Without loss of generality
assume that ged(a,b) # R*. Since the only divisors of a are its associates and units, it must be the case
that ged(a,b) = aR*. In particular, a|b, and a is prime. O



2 Gauss’ Lemma

Let R be a GCD domain. Given a polynomial f(X) =", a; X" € R[X], we define the content of f to be

c(f) = ged(ag, ar, aq, .. .).

The GCD exists because only finitely many of the a; are nonzero. When ¢(f) = R* say that f is primitive.
As we will see, in terms of factorization, the primitive polynomials over a domain play the same role the
monic polynomials over a field play. If 0 # d € ¢(f), then

=i (5) =

where fis primitive by part 1 of Lemma 1. Furthermore, by part 2 of Lemma 1 we have

clef) =e-c(f)
for any r € R. In particular, if a € R, then ¢(a) = a-¢(1) = aR*. This means that a € R is primitive if and
only if a € R*. These are the only observations we need to prove Gauss’ lemma.

Lemma 3 (Gauss). Let R be a GCD domain and let f,g € R[X]|. If f and g are primitive, then fg is
primaitive.

Proof. We prove the contrapositive by induction on n = deg fg. When n = 0, f,g € R and ¢(fg) =
fgR* = (fR*)(gR*) = c(f)c(g). Since ¢(fg) # R*, this implies ¢(f) # R* or ¢(g) # R*. Now let n > 1
and assume we have proven the result for all pairs of polynomials whose product has degree less than n.
Suppose deg fg = n. Write ¢(fg) = dR* # R*. Let f = aX*+ O(X'"!) and g = bX™ + O(X™1). Then
fg=abX"+O(X" ') and ab € (d). Thus (ab,d) = (d) # R and either ged(a,d) # R* or ged(b,d) # R*, by
Lemma 2. Assume, without loss of generality, that gcd(a,d) = eR* # R*. Then e divides every coefficient
of fg—aX™g = (f —aX")g. This implies that c((f —aX*)g) C (e) # R and hence (f —aX")g is imprimitive.
Since deg(f — aX*) < deg f, deg(f —aX")g < deg fg = n. The inductive hypothesis therefore implies that
either f; = f — aX" or g is imprimitive.

If ¢ is imprimitive, we're finished. If g is primitive, write f; = e f; where c(f1) = e R* and fi e R[X]
is primitive. Because deg f; = deg f1, we can again apply the (contrapositive of the) inductive hypothesis to
conclude that f1g is primitive. Then

c(fig) =c (elflg> =eic (J?lg> =e1R™ = c(f1).

It follows that ¢(f1) C (e). So e divides all the coefficients of f; as well as the coefficients of aX¢. Thus e
divides all of the coefficients of f; + aX™ = f. That is, ¢(f) C (e). Since (e) # R, ¢(f) # R* so that f is
imprimitive. This completes the induction. O

Corollary 3. Let R be a GCD domain and let f,g € R[X]. Then c(fg) = c(f)c(g).

Proof. If f = 0 or g = 0 there is nothing to prove, so we may assume f,g # 0. Then f = df and g = eg,
where d € ¢(f), e € ¢(g) and f,g € R[X] are primitive. Then fg is primitive by Gauss’ lemma so that

o(fg) = ¢ (defg) = de-c([g) = deR* = e(f)elg).
O

There is a somewhat simpler and more intuitive proof of Gauss’ lemma when R is a a UFD. See Appendix
2.

Remark 2. Some authors define the content of a polynomial f to be the ideal ¢/(f) generated by coefficients.
Others define the content to be a specific greatest common divisor ¢’(f) of the coefficients. Our definition
of ¢(f) lies somewhere in the middle. For any f € R[X],

"(f) € e(f) = ged(d'(f))-



3 Consequences

We now apply Gauss’ lemma and its corollary to study irreducibility and factorization in R[X].

Theorem 2. Let R be a GCD domain and let f € R[X]|. If f is primitive, then f is irreducible in R[X] if
and only if f is irreducible in R[X].

Proof. We prove the contrapositive. Suppose f is reducible in R[X]. Then f = gh for some g, h € R[X]\ R*.
If g € R, then g € ¢(f) = R*, which is impossible. So g € R. By symmetry, h ¢ R. This means that
deg g,deg h > 1. In particular, g,h € Q(R)[X] cannot be units. Thus the factorization f = gh is nontrivial
and f is reducible in Q(R)[X].

Now suppose f is reducible in Q(R)[X]. Write f = gh with g,h € Q(R)[X] of positive degree. Choose
a,b € R so that ag,bh € R[X]. Let d € c(ag), e € c¢(bh) and write ag = dg, bh = eh with g,g € R[X]. Then

abR* = ab- c(f) = c(abf) = c((af)(bh)) = c(af)c(bf) = deR*.

Thus abf = degh = uabgh for some u € R*, so that f = (uﬁ)ﬁ This is a nontrivial factorization of f in
R[X], because degg = degg > 1 and degh = degh > 1. Hence f is reducible in R[X] if it is reducible in
QR)[X]. O

Remark 3. In the second paragraph, the final factorization of f over R can differ from the initial factor-
ization over Q(R). For instance, consider X2 over Z. It is certainly primitive, and X? = (2X)(X/2) over
Q. In the notation of the proof,a =1,b=2,d=2,e=1, and g = h. Since ab = de, u = 1, so our final
factorization over Z is just X2 =gh = X - X.

Example 2. Let F be a field and X, T independent variables. We claim that for any n € N, 7" — X is
irreducible over F'(X). As a polynomial in T over F[X], the nonzero coefficients of 7" — X are 1 and —X,
so T™ — X is primitive. So it suffices to prove that T™ — X is irreducible in F[X,T], by Theorem 2. But as
polynomial in X over F[T], T" — X is also primitive, so that we need only check irreducibility in F(T)[X].
But here T™ — X is a linear polynomial over a field, so it is automatically irreducible. This prove the claim.

The proof of Theorem 2 can be modified to yield the following somewhat more precise statement.

Corollary 4. Let R be a GCD domain. If f € R[X] is primitive and f = g1---g. over Q(R), then
f=aq1-gr over R with g; a primitive Q(R)*-multiple of g;. In particular, deg g; = deg g; for all i.

Proof. Choose a; € R so that a;g; € R[X] for all ¢ and write a;g; = b;g;, with b; € c(a;9;) and g; € R[X]
primitive. By the corollary to Gauss’ lemma

al...arRX :C(al"'arf) :0((algl)...(argr)) :bl"'erX.
Therefore
al"'arf:bl"'brgj"'gvr :ual...a’rgvl...g;
for some u € R*. The result now follows upon replacing ug; with g7.

O

Corollary 5. Let R be a GCD domain and let f € R[X] be monic. If a € Q(R) is a root of f, then a € R.
That is, R is integrally closed in its quotient field.

Proof. Write f = (X — a)g over Q(R). Since f is monic, it is primitive. Since X — a is also monic, g is
monic. By Corollary 4, there exist r, s € Q(R) so that (X — a), sg € R[X] are primitive and rs = 1. Since
the leading coefficients of (X — a) and rg are r, s, we must have r,s € R. But then the equation rs = 1
implies that r,s € R*. Hence g, X —a € R[X] and so a € R. O



Now let R be a UFD. If a1, as9,...,a, € R, then there are primes/irreducibles m;, exponents e;; € Ny
and units u; € R* so that
kA
a; = U; H ’IT;'7
j=1

for : = 1,2,...,n. We can assume every factorization involves the same set of primes because we have
allowed zero exponents. In this setting, the e;; are unique. Let n; = min;{n;;} and set

T
_ n;
d= H ;.
j=1

Then d is a common divisor of the a;. If ela; and 7 is a prime dividing e, then m|a;. Uniqueness of prime
factorizations implies that 7 is associate to m; for some j. Thus

T
e:qurff, ¢; € Ny, u€ R,

Jj=1

Since the hypotheses apply to % as well,
= :UHﬂ';nj, m; € Ng, ve R*.

Thus

kA
a; Li+m;
a; =e— =uv T
e J
j=1

Uniqueness of prime factorizations now implies that £; + m; = n,;, which means ¢; < n;;. If e|a; for all 1,
then ¢; < n;; for all 4, so that ¢; < n;. This implies that e|d. Hence d € gcd(ay, .. .,a,). This proves that
R is a GCD domain. We will use this fact in the proof of our final result.

Theorem 3. If R is a UFD, then R[X] is a UFD.

Proof. Let f € R[X]\ R*. Write f = df with d € R and f € R[X] primitive. Because Q(R) is a field,
Q(R)[X] is a UFD. We can therefore write f = p;---ps with p; € Q(R)[X] irreducible. By Lemma 4,
f = p1---ps with p; € R[X] a primitive Q(R)*-multiple of p;. Because p; is a unit multiple of p;, it is
irreducible over Q(R). By Theorem 2, p; is irreducible over R. If d = my---m, is the prime/irreducible
factorization of d in R, we then have the factorization

f:df=7r1---7rrz31--~175. (2)

in R[X]. Since an irreducible in R remains irreducible in R[X] (exercise), (2) is an irreducible factorization
of f over R.

We now need to show that every irreducible in R[X] is prime. Let p € R[X] be irreducible and suppose
p|fg for some f,g € R[X]. If d € ¢(p) and we write p = dp with p € R[X] primitive, then irreducibility
implies that d € R[X]* = R*. Hence p is already primitive. Theorem 2 tells us that p is irreducible over
Q(R). Since Q(R)[X] is a UFD, p is prime in that ring. So, without loss of generality, p|f in Q(R)[X]. Set
f =pgq with ¢ € Q(R)[X]. Choose a € R so that ag € R[X] and set ag = eq with c¢(aq) = eR™ and q € R[X]
primitive. Then

ac(f) = claf) = c(p(aq)) = c(p)c(ag) = eR* = ale = q¢q= 2q~6 R[X].

Thus p divides f over R, and we're finished. O
Remark 4. It is also true that if R is a GCD domain, then R[X] is a GCD domain.



Example 3. a. Since Z is a UFD, so is Z[X]. But then Z[X,Y] = Z[X][Y] is a UFD. And this im-
plies Z[X,Y, Z] = Z|X,Y][Z] is a UFD. We can clearly continue this on indefinitely to conclude that
Z]X1,X2,...Xy] is a UFD for all n > 1 (Z can be replaced by any UFD).

b. In Z[X,Y] we have 60XY + 30Y +40X +20 =10(6XY +3Y + X +2)=2-5-(2X + 1)(3Y +2). By
Theorem 2, any primitive linear polynomial over Z is irreducible. So 2X + 1 € Z[X] is irreducible. It
remains irreducible in Z[X,Y]. Likewise, 3Y + 2 is irreducible in Z[X,Y]. So we have the irreducible
factorization

60XY 4 30Y + 40X +20=2-5- (2X + 1)(3Y +2).

4 Appendix 1: Quotients of Monoids

Let M be a (multiplicative) commutative monoid and let G be a subgroup of M. For a,b € M, define a = b
(mod @) if and only if @ = bg for some g € G. Because G contains the identity of M and the inverse of
each of its elements, & is an equivalence relation. The equivalence class of a € M is clearly aG. Moreover, if
a,b € M, then (aG)(bG) = abG, since G contains the identity and M is commutative. This binary operation
makes M/ = into a commutative monoid. Associativity is immediate and if e € M is the identity, then eG
is the identity in M/ 2.

This seems to mimic the situation with quotient groups quite well, with one exception. While the “cosets”
aG still partition M, they need not all have the same cardinality. This is because the map A\, : G — aG
given by g — ag need not be one-to-one. So there’s no analogue of Lagrange’s theorem, in general. If we
assume M is cancellative, however, the map A, is a bijection for all a € M, and Lagrange’s theorem holds
with the same proof.

The group G acts on M by left translation. The orbit of a € M is Ga = aG. If H = Stab(a), then
according to the orbit-stabilizer theorem, |aG| = [G : H]. Hence, although it need not be the case that
laG| = |G|, we always at least have |aG|||G|.

Example 4. Let R be a ring. Then R is a monoid under multiplication and R* is a subgroup. The
congruence modulo R* is simply the associate relation, and its equivalence classes are the sets aR*, a € R.
The element 0 prevents R from being cancellative and its class 0R* = {0} is usually exceptionally small.
If R is a domain, then )\, is a bijection for all nonzero a € R, so that every nonzero association class has
cardinality |R*|. Moreover, the association classes are in one-to-one correspondence with the principal ideals
in R, via aR* + (a).

5 Appendix 2: Gauss’ Lemma over Other Domains

For certain subclasses of the GCD domains, Gauss’ lemma can be proved by simpler, more ideal theoretic
means.

Theorem 4. Let R be a UFD and let f,g € R[X]. If f and g are primitive, then fg is primitive.

Proof. We prove the contrapositive. If ¢(fg) = dR* # R*, then d ¢ R*. Because R is UFD, It follows
that d must have a prime factor p € R. Consider the natural map R — R/(p). It lifts to a homomorphism
¢ : R[X] — (R/(p))[X] by acting on coefficients. Since p|d € ¢(fc), p divides the coefficients of fg. That is,
o(fg) = 0. But ¢(fg) = o(f)e(g) and R/(p) is a domain, so (WLOG) ¢(f) = 0. This means that every
coefficient of f is divisible by p so that ¢(f) # R*. O

Theorem 5. Let R be a B’ezout domain and let f,g € R[X]. If f and g are primitive, then fg is primitive.

Proof. We prove the contrapositive. If ¢(fg) = dR* # R*, then d ¢ R*. Choose a maximal ideal m of R
containing (d). As above the natural map R — R/m lifts to a homomorphism ¢ : R[X]| — (R/m)[X]. Since



R is a Bézout domain, (d) is the ideal generated by the coefficients of fg. This means every coefficient of fg
lies in m. That is, (fg) = 0. But ¢(fg) = ¢(f)p(9) and R/m is a field, so (WLOG) ¢(f) = 0. This means
that every coefficient of f lies in m. Hence so that ¢(f) # R*. O

Although the proof of Theorem 5 seems general enough to handle the GCD case, it is in the last step
that it breaks down. In general, even if the elements in a GCD are contained in a maximal ideal, the GCD
itself need not be. For example, (2, X) is maximal in Z[X] but the GCD of its generators is {+1}.



