GCDs and Gauss’ Lemma

R. C. Daileda

1 GCD Domains

Let R be a domain and $S \subseteq R$. We say $c \in R$ is a common divisor of S if $c | s$ for every $s \in S$. Equivalently, $S \subseteq (c)$ or $(S) \subseteq (c)$. We say a common divisor d is a greatest common divisor (GCD) of S if every common divisor c of S satisfies $c | d$. That is, d is a GCD of S if and only if (d) is the least element of the set

$$\{(c) \mid c \in R, (S) \subseteq (c)\},$$

provided the least element exists. When it exists, the GCD of S is only defined up to association: the GCDs of S are the generators of the least element of (1). We will write $a \approx b$ to indicate that $a, b \in R$ are associates. In this case their common equivalence class is aR^\times. The association classes form a commutative multiplicative monoid under the operation $(aR^\times)(bR^\times) = abR^\times$ (see the appendix). Let $\gcd S$ denote the association class consisting of the GCDs of S. Thus, the statement “d is a GCD of S” is equivalent to $d \in \gcd S$. A domain R is called a GCD domain if every finite subset of R has a GCD.

Suppose that R is a GCD domain and d is a GCD for $a_1, a_2, \ldots, a_m \in R$. Write $a_i = db_i$ for each i, with $b_i \in R$. If $c \in R$ and $c | b_i$ for all i, then $cd | a_i$ for all i. This means $cd | d$ and hence $c | 1$, so that c is a unit. It follows that 1 is a GCD for the a_i and hence $\gcd\{a_i\} = R^\times$.

Example 1.

a. In \mathbb{Z}, $\gcd(49, 21) = \{\pm 7\}$. In $\mathbb{Z}[X]$, $\gcd(2, X) = \{\pm 1\}$. Notice that in the first case we have $(49, 21) = (7)$, while in the second $(2, X) \neq (1) = \mathbb{Z}[X]$.

b. Every PID R is a GCD domain. Given any $S \subseteq R$, $(S) = (d)$ for some $d \in R$, and hence $\gcd S = dR^\times$.

c. Every Bézout domain R is a GCD domain for similar reasons.

d. Every UFD is a GCD domain. See section 3.

e. Let F be a field. The monoid ring $F[X; \mathbb{Q}^*_0]$ is an GCD domain but is not a UFD.

f. Every GCD domain is an AP domain. See Theorem 1.

Remark 1.

a. There are now two different notions of the GCD of S: (i) the the smallest ideal containing S; (ii) (the generators of) the smallest principal ideal containing S. These need not be the same! Take $R = \mathbb{Z}[X]$ and $S = \{2, X\}$. The ideal-theoretic GCD is the proper ideal $(2, X) = \{f \in \mathbb{Z}[X] \mid f(0) \text{ even}\}$, while the element-wise GCDs are $\{\pm 1\}$. The reason for the distinction here (and in general) is that S does not generate a principal ideal.

b. Consider R as a subring of its quotient field. If $a, b \in R$, $b \neq 0$ and $b | a$, then there is a unique $c \in R$ so that $bc = a$. We call c the factor or divisor complementary to b. We can use fractions to help us represent it. If we embed R in its quotient field, $bc = a$ becomes $\frac{bc}{b} = \frac{a}{b}$, which is equivalent to $\frac{c}{1} = \frac{a}{b}$. When $b | a$ in R we will therefore write $\frac{a}{b}$ to denote the divisor complementary to b.

Lemma 1. Let R be a domain and $S, T \subseteq R$. 1
1. If $c \in R$ is nonzero, $S \subset (c)$ and \gcd S exists, then \gcd $(S/c) = \frac{\gcd S}{c}$.

2. For any $c \in R$, \gcd $(cS) = c \cdot \gcd S$, provided \gcd (cS) exists.

3. \gcd $(S \cup T) = \gcd (S \cup \gcd T)$, provided the \GCD$s exist.

Proof.

1. Let $d \in \gcd S$. Then $c \mid d$ by definition. So $S \subset (d)$ implies $S/c \subset \left(\frac{d}{c}\right)$. If $S/c \subset (e)$, then $S \subset (ce)$ so that $(d) \subset (ce)$ and hence $\left(\frac{d}{c}\right) \subset (e)$. This proves that \gcd $(S/c) = \frac{\gcd S}{c}$.

2. If $c = 0$ there is nothing to prove. Otherwise, if \gcd (cS) exists, then since $cS \subset (c)$, the first part implies

\[
\gcd S = \gcd \left(\frac{cS}{c}\right) = \frac{\gcd(cS)}{c} \Rightarrow c \cdot \gcd S = \gcd(cS).
\]

3. For any $d \in R$, $T \subset (d)$ if and only if $\gcd T \subset (d)$. So

\[
S \cup T \subset (d) \iff S \subset (d) \text{ and } T \subset (d)
\]

\[
\iff S \subset (d) \text{ and } \gcd T \subset (d)
\]

\[
\iff S \cup \gcd T \subset (d).
\]

The result follows.

Lemma 2. Let R be a \GCD domain, let $c \in R$ and let $S, T \subset R$ be finite. Then

\[
\gcd (S \cup cT) = \gcd (S \cup c \cdot \gcd (S \cup T)).
\]

Proof. Repeatedly apply parts 2 and 3 of Lemma 1:

\[
\gcd (S \cup cT) = \gcd (\gcd (S) \cup cT)
\]

\[
= \gcd (\gcd (S \cup cS) \cup cT)
\]

\[
= \gcd (S \cup cS \cup \gcd (cT))
\]

\[
= \gcd (S \cup c \cdot \gcd (S \cup c \cdot \gcd (T)))
\]

\[
= \gcd (S \cup c \cdot \gcd (S \cup \gcd (T)))
\]

\[
= \gcd (S \cup c \cdot \gcd (S \cup T)).
\]

Corollary 1. Let R be a \GCD domain, $a, b, c \in R$. If $\gcd(a, b) = R^\times$, then $\gcd(a, bc) = \gcd(a, c)$.

Proof. Apply Lemma 2 with $S = \{a\}$ and $T = \{b\}$.

Corollary 2. Let R be a \GCD domain, $a, b, c \in R$. If $\gcd(a, b) = \gcd(a, c) = R^\times$, then $\gcd(a, bc) = R^\times$.

Under the stronger hypothesis that R is a Bézout domain, Corollaries 1 and 2 have dramatically simpler proofs. The examples of \GCD domains that we have seen so far are all \AP domains. Corollary 2 can be used to show that there’s a reason for this.

Theorem 1. Every \GCD domain is an \AP domain.

Proof. Let R be a \GCD domain and suppose $a \in R$ is irreducible. Suppose $b, c \in R$ and $a \mid bc$. Then $\gcd(a, bc) = aR^\times \neq R^\times$. By Corollary 2, $\gcd(a, b) \neq R^\times$ or $\gcd(a, c) \neq R^\times$. Without loss of generality assume that $\gcd(a, b) \neq R^\times$. Since the only divisors of a are its associates and units, it must be the case that $\gcd(a, b) = aR^\times$. In particular, $a \mid b$, and a is prime.
2 Gauss’ Lemma

Let R be a GCD domain. Given a polynomial $f(X) = \sum_i a_i X^i \in R[X]$, we define the content of f to be

$$c(f) = \gcd(a_0, a_1, a_2, \ldots).$$

The GCD exists because only finitely many of the a_i are nonzero. When $c(f) = R^\times$ say that f is primitive.

As we will see, in terms of factorization, the primitive polynomials over a domain play the same role the monic polynomials over a field play. If $0 \neq d \in c(f)$, then

$$f = d \sum_i \left(\frac{a_i}{d}\right) X^i = d\tilde{f},$$

where \tilde{f} is primitive by part 1 of Lemma 1. Furthermore, by part 2 of Lemma 1 we have

$$c(ef) = e \cdot c(f)$$

for any $r \in R$. In particular, if $a \in R$, then $c(a) = a \cdot c(1) = aR^\times$. This means that $a \in R$ is primitive if and only if $a \in R^\times$. These are the only observations we need to prove Gauss’ lemma.

Lemma 3 (Gauss). Let R be a GCD domain and let $f, g \in R[X]$. If f and g are primitive, then fg is primitive.

Proof. We prove the contrapositive by induction on $n = \deg fg$. When $n = 0$, $f, g \in R$ and $c(fg) = \deg fg = (\deg f)(\deg g) = c(f)c(g)$. Since $c(fg) \neq R^\times$, this implies $c(f) \neq R^\times$ or $c(g) \neq R^\times$. Now let $n \geq 1$ and assume we have proven the result for all pairs of polynomials whose product has degree less than n.

Suppose $\deg fg = n$. Write $c(fg) = dR^\times \neq R^\times$. Let $f = aX^\ell + O(X^{\ell-1})$ and $g = bX^m + O(X^{m-1})$. Then $fg = abX^n + O(X^{n-1})$ and $ab \in (d)$. Thus $(ab, d) = (d) \neq R$ and either $\gcd(a, d) \neq R^\times$ or $\gcd(b, d) \neq R^\times$, by Lemma 2. Assume, without loss of generality, that $\gcd(a, d) = eR^\times \neq R^\times$. Then e divides every coefficient of $fg = aX^m g = (f - aX^\ell)g$. This implies that $c((f-aX^\ell)g) \subseteq (e) \neq R$ and hence $(f-aX^\ell)g$ is imprimitive. Since $\deg(f-aX^\ell) < \deg f$, $\deg(f-aX^\ell)g < \deg fg = n$. The inductive hypothesis therefore implies that either $f_1 = f - aX^\ell$ or g is imprimitive.

If g is imprimitive, we’re finished. If g is primitive, write $f_1 = e_1 \tilde{f}_1$ where $c(f_1) = e_1 R^\times$ and $\tilde{f}_1 \in R[X]$ is primitive. Because $\deg \tilde{f}_1 = \deg f_1$, we can again apply the (contrapositive of the) inductive hypothesis to conclude that $\tilde{f}_1 g$ is primitive. Then

$$c(f_1g) = c(e_1\tilde{f}_1g) = e_1c(\tilde{f}_1g) = e_1R^\times = c(f_1).$$

It follows that $c(f_1) \subseteq (e)$. So e divides all the coefficients of f_1 as well as the coefficients of aX^ℓ. Thus e divides all the coefficients of $f_1 + aX^m = f$. That is, $c(f) \subseteq (e)$. Since $(e) \neq R$, $c(f) \neq R^\times$ so that f is imprimitive. This completes the induction. \qed

Corollary 3. Let R be a GCD domain and let $f, g \in R[X]$. Then $c(fg) = c(f)c(g)$.

Proof. If $f = 0$ or $g = 0$ there is nothing to prove, so we may assume $f, g \neq 0$. Then $f = d\tilde{f}$ and $g = e\tilde{g}$, where $d \in c(f)$, $e \in c(g)$ and $\tilde{f}, \tilde{g} \in R[X]$ are primitive. Then $\tilde{f}\tilde{g}$ is primitive by Gauss’ lemma so that

$$c(fg) = c(de\tilde{f}\tilde{g}) = de \cdot c(\tilde{f}\tilde{g}) = deR^\times = c(f)c(g).$$

There is a somewhat simpler and more intuitive proof of Gauss’ lemma when R is a a UFD. See Appendix 2.

Remark 2. Some authors define the content of a polynomial f to be the ideal $c'(f)$ generated by coefficients. Others define the content to be a specific greatest common divisor $c''(f)$ of the coefficients. Our definition of $c(f)$ lies somewhere in the middle. For any $f \in R[X],

$$c''(f) \in c(f) = \gcd(c'(f)).$$

3 Consequences

We now apply Gauss’ lemma and its corollary to study irreducibility and factorization in \(R[X] \).

Theorem 2. Let \(R \) be a GCD domain and let \(f \in R[X] \). If \(f \) is primitive, then \(f \) is irreducible in \(R[X] \) if and only if \(f \) is irreducible in \(R[\bar{X}] \).

Proof. We prove the contrapositive. Suppose \(f \) is reducible in \(R[X] \). Then \(f = gh \) for some \(g, h \in R[X] \). If \(g \in R \), then \(g \in c(f) = R^{\times} \), which is impossible. So \(g \not\in R \). By symmetry, \(h \not\in R \). This means that \(\deg g, \deg h \geq 1 \). In particular, \(g, h \in Q(R)[\bar{X}] \) cannot be units. Thus the factorization \(f = gh \) is nontrivial and \(f \) is reducible in \(Q(R)[\bar{X}] \).

Now suppose \(f \) is reducible in \(Q(R)[\bar{X}] \). Write \(f = gh \) with \(g, h \in Q(R)[\bar{X}] \) of positive degree. Choose \(a, b \in R \) so that \(ag, bh \in R[\bar{X}] \). Let \(d \in c(\bar{a}g) \), \(e \in c(\bar{b}h) \) and write \(ag = d\bar{g}, bh = ch \) with \(\bar{g}, \bar{h} \in R[\bar{X}] \). Then
\[
ab R^{\times} = ab \cdot c(f) = c(abf) = c((af)(bh)) = c(bf) = de R^{\times}.
\]

Thus \(abf = \deg \bar{g}h = u ab\bar{g}\bar{h} \) for some \(u \in R^{\times} \), so that \(f = (u\bar{g}\bar{h})h \). This is a nontrivial factorization of \(f \) in \(R[\bar{X}] \), because \(\deg \bar{g} = \deg g \geq 1 \) and \(\deg \bar{h} = \deg h \geq 1 \). Hence \(f \) is reducible in \(R[\bar{X}] \) if it is reducible in \(Q(R)[\bar{X}] \).

Remark 3. In the second paragraph, the final factorization of \(f \) over \(R \) can differ from the initial factorization over \(Q(R) \). For instance, consider \(X^2 \) over \(\mathbb{Z} \). It is certainly primitive, and \(X^2 = (2X)(X/2) \) over \(\mathbb{Q} \). In the notation of the proof, \(a = 1, b = 2, d = 2, e = 1, \) and \(\bar{g} = \bar{h} \). Since \(ab = de, u = 1 \), so our final factorization over \(\mathbb{Z} \) is just \(X^2 = \bar{g}h = X \cdot X \).

Example 2. Let \(F \) be a field and \(X, T \) independent variables. We claim that for any \(n \in \mathbb{N} \), \(T^n - X \) is irreducible over \(F(X) \). As a polynomial in \(T \) over \(F[X] \), the nonzero coefficients of \(T^n - X \) are 1 and \(-X \), so \(T^n - X \) is primitive. So it suffices to prove that \(T^n - X \) is irreducible in \(F[X, T] \), by Theorem 2. But as polynomial in \(X \) over \(F[T] \), \(T^n - X \) is also primitive, so that we need only check irreducibility in \(F(T)[X] \). But here \(T^n - X \) is a linear polynomial over a field, so it is automatically irreducible. This prove the claim.

The proof of Theorem 2 can be modified to yield the following somewhat more precise statement.

Corollary 4. Let \(R \) be a GCD domain. If \(f \in R[X] \) is primitive and \(f = g_1 \cdots g_r \) over \(Q(R) \), then \(f = \bar{g}_1 \cdots \bar{g}_r \) over \(R \) with \(\bar{g}_i \) a primitive \(Q(R)^{\times} \)-multiple of \(g_i \). In particular, \(\deg \bar{g}_i = \deg g_i \) for all \(i \).

Proof. Choose \(a_i \in R \) so that \(a_i g_i \in R[X] \) for all \(i \) and write \(a_i g_i = b_i \bar{g}_i \), with \(b_i \in c(a_i g_i) \) and \(\bar{g}_i \in R[\bar{X}] \) primitive. By the corollary to Gauss’ lemma
\[
a_1 \cdots a_r R^{\times} = c(a_1 \cdots a_r f) = c((a_1 g_1) \cdots (a_r g_r)) = b_1 \cdots b_r R^{\times}.
\]

Therefore
\[
a_1 \cdots a_r f = b_1 \cdots b_r \bar{g}_1 \cdots \bar{g}_r = u a_1 \cdots a_r \bar{g}_1 \cdots \bar{g}_r
\]
for some \(u \in R^{\times} \). The result now follows upon replacing \(u \bar{g}_1 \) with \(\bar{g}_1 \).

Corollary 5. Let \(R \) be a GCD domain and let \(f \in R[X] \) be monic. If \(a \in Q(R) \) is a root of \(f \), then \(a \in R \). That is, \(R \) is integrally closed in its quotient field.

Proof. Write \(f = (X - a)g \) over \(Q(R) \). Since \(f \) is monic, it is primitive. Since \(X - a \) is also monic, \(g \) is monic. By Corollary 4, there exist \(r, s \in Q(R) \) so that \(r(X - a), sg \in R[X] \) are primitive and \(rs = 1 \). Since the leading coefficients of \(r(X - a) \) and \(rg \) are \(r, s \), we must have \(r, s \in R \). But then the equation \(rs = 1 \) implies that \(r, s \in R^{\times} \). Hence \(g, X - a \in R[X] \) and so \(a \in R \).
Now let R be a UFD. If $a_1, a_2, \ldots, a_n \in R$, then there are primes/irreducibles π_j, exponents $e_{ij} \in \mathbb{N}_0$ and units $u_i \in R^\times$ so that
\[a_i = u_i \prod_{j=1}^r \pi_j^{ij} \]
for $i = 1, 2, \ldots, n$. We can assume every factorization involves the same set of primes because we have allowed zero exponents. In this setting, the e_{ij} are unique. Let $n_j = \min_i \{n_{ij}\}$ and set
\[d = \prod_{j=1}^r \pi_j^{nj} \].
Then d is a common divisor of the a_i. If $e|a_i$ and π is a prime dividing e, then $\pi|a_i$. Uniqueness of prime factorizations implies that π is associate to π_j for some j. Thus
\[e = u \prod_{j=1}^r \pi_j^{\ell_j}, \quad \ell_j \in \mathbb{N}_0, \quad u \in R^\times. \]
Since the hypotheses apply to $\frac{a_i}{e}$ as well,
\[\frac{a_i}{e} = v \prod_{j=1}^r \pi_j^{m_j}, \quad m_j \in \mathbb{N}_0, \quad v \in R^\times. \]
Thus
\[a_i = e \frac{a_i}{e} = uv \prod_{j=1}^r \pi_j^{\ell_j+m_j}. \]
Uniqueness of prime factorizations now implies that $\ell_j + m_j = n_{ij}$, which means $\ell_j \leq n_{ij}$. If $e|a_i$ for all i, then $\ell_j \leq n_{ij}$ for all i, so that $\ell_j \leq n_j$. This implies that $e|d$. Hence $d \in \gcd(a_1, \ldots, a_n)$. This proves that R is a GCD domain. We will use this fact in the proof of our final result.

Theorem 3. If R is a UFD, then $R[X]$ is a UFD.

Proof. Let $f \in R[X] \setminus R^\times$. Write $f = d \bar{f}$ with $d \in R$ and $\bar{f} \in R[X]$ primitive. Because $Q(R)$ is a field, $Q(R)[X]$ is a UFD. We can therefore write $\bar{f} = p_1 \cdots p_s$ with $p_i \in Q(R)[X]$ irreducible. By Lemma 4, $\bar{f} = \bar{p}_1 \cdots \bar{p}_s$ with $\bar{p}_i \in R[X]$ a primitive $Q(R)^\times$-multiple of p_i. Because \bar{p}_i is a unit multiple of p_i, it is irreducible over $Q(R)$. By Theorem 2, \bar{p}_i is irreducible over R. If $d = \pi_1 \cdots \pi_r$ is the prime/irreducible factorization of d in R, we then have the factorization
\[f = d \bar{f} = \pi_1 \cdots \pi_r \bar{p}_1 \cdots \bar{p}_s. \] (2)
in $R[X]$. Since an irreducible in R remains irreducible in $R[X]$ (exercise), (2) is an irreducible factorization of f over R.

We now need to show that every irreducible in $R[X]$ is prime. Let $p \in R[X]$ be irreducible and suppose $p|fg$ for some $f, g \in R[X]$. If $d \in \gcd(p)$ and we write $p = dp\bar{p}$ with $\bar{p} \in R[X]$ primitive, then irreducibility implies that $d \in R[X]^\times = R^\times$. Hence p is already primitive. Theorem 2 tells us that p is irreducible over $Q(R)$. Since $Q(R)[X]$ is a UFD, p is prime in that ring. So, without loss of generality, $p|f$ in $Q(R)[X]$. Set $f = pq$ with $q \in Q(R)[X]$. Choose $a \in R$ so that $aq \in R[X]$ and set $aq = e\bar{q}$ with $c(aq) = eR^\times$ and $\bar{q} \in R[X]$ primitive. Then
\[ac(f) = c(af) = c(p(aq)) = c(p)c(aq) = eR^\times \Rightarrow a|e \Rightarrow q = \frac{e}{a} \bar{q} \in R[X]. \]
Thus p divides f over R, and we’re finished. \[\square\]

Remark 4. It is also true that if R is a GCD domain, then $R[X]$ is a GCD domain.
Example 3. a. Since \(\mathbb{Z} \) is a UFD, so is \(\mathbb{Z}[X] \). But then \(\mathbb{Z}[X,Y] = \mathbb{Z}[X][Y] \) is a UFD. And this implies \(\mathbb{Z}[X,Y,Z] = \mathbb{Z}[X,Y][Z] \) is a UFD. We can clearly continue this on indefinitely to conclude that \(\mathbb{Z}[X_1,X_2,\ldots,X_n] \) is a UFD for all \(n \geq 1 \) (\(\mathbb{Z} \) can be replaced by any UFD).

b. In \(\mathbb{Z}[X,Y] \) we have \(60XY + 30Y + 40X + 20 = 10(6XY + 3Y + X + 2) = 2 \cdot 5 \cdot (2X + 1)(3Y + 2) \). By Theorem 2, any primitive linear polynomial over \(\mathbb{Z} \) is irreducible. So \(2X + 1 \in \mathbb{Z}[X] \) is irreducible. It remains irreducible in \(\mathbb{Z}[X,Y] \). Likewise, \(3Y + 2 \) is irreducible in \(\mathbb{Z}[X,Y] \). So we have the irreducible factorization
\[
60XY + 30Y + 40X + 20 = 2 \cdot 5 \cdot (2X + 1)(3Y + 2).
\]

4 Appendix 1: Quotients of Monoids

Let \(M \) be a (multiplicative) commutative monoid and let \(G \) be a subgroup of \(M \). For \(a,b \in M \), define \(a \cong b \) (mod \(G \)) if and only if \(a = bg \) for some \(g \in G \). Because \(G \) contains the identity of \(M \) and the inverse of each of its elements, \(\cong \) is an equivalence relation. The equivalence class of \(a \in M \) is clearly \(aG \). Moreover, if \(a,b \in M \), then \((aG)(bG) = abG \), since \(G \) contains the identity and \(M \) is commutative. This binary operation makes \(M/\cong \) into a commutative monoid. Associativity is immediate and if \(e \in M \) is the identity, then \(eG \) is the identity in \(M/\cong \).

This seems to mimic the situation with quotient groups quite well, with one exception. While the “cosets” \(aG \) still partition \(M \), they need not all have the same cardinality. This is because the map \(\lambda_a : G \to aG \) given by \(g \mapsto ag \) need not be one-to-one. So there’s no analogue of Lagrange’s theorem, in general. If we assume \(M \) is cancellative, however, the map \(\lambda_a \) is a bijection for all \(a \in M \), and Lagrange’s theorem holds with the same proof.

The group \(G \) acts on \(M \) by left translation. The orbit of \(a \in M \) is \(Ga = aG \). If \(H = \text{Stab}(a) \), then according to the orbit-stabilizer theorem, \(|aG| = [G:H] \). Hence, although it need not be the case that \(|aG| = |G| \), we always at least have \(|aG||G| \).

Example 4. Let \(R \) be a ring. Then \(R \) is a monoid under multiplication and \(R^\times \) is a subgroup. The congruence modulo \(R^\times \) is simply the associate relation, and its equivalence classes are the sets \(aR^\times, a \in R \). The element 0 prevents \(R \) from being cancellative and its class \(0R^\times = \{0\} \) is usually exceptionally small.

If \(R \) is a domain, then \(\lambda_a \) is a bijection for all nonzero \(a \in R \), so that every nonzero association class has cardinality \(|R^\times| \). Moreover, the association classes are in one-to-one correspondence with the principal ideals in \(R \), via \(aR^\times \mapsto (a) \).

5 Appendix 2: Gauss’ Lemma over Other Domains

For certain subclasses of the GCD domains, Gauss’ lemma can be proved by simpler, more ideal theoretic means.

Theorem 4. Let \(R \) be a UFD and let \(f,g \in R[X] \). If \(f \) and \(g \) are primitive, then \(fg \) is primitive.

Proof. We prove the contrapositive. If \(c(fg) = dR^\times \neq R^\times \), then \(d \notin R^\times \). Because \(R \) is UFD, it follows that \(d \) must have a prime factor \(p \in R \). Consider the natural map \(R \to R/(p) \). It lifts to a homomorphism \(\varphi : R[X] \to (R/(p))[X] \) by acting on coefficients. Since \(p|d \in c(fc) \), \(p \) divides the coefficients of \(fg \). That is, \(\varphi(fg) = 0 \). But \(\varphi(fg) = \varphi(f)\varphi(g) \) and \(R/(p) \) is a domain, so (WLOG) \(\varphi(f) = 0 \). This means that every coefficient of \(f \) is divisible by \(p \) so that \(c(f) \neq R^\times \).

Theorem 5. Let \(R \) be a B’ezout domain and let \(f,g \in R[X] \). If \(f \) and \(g \) are primitive, then \(fg \) is primitive.

Proof. We prove the contrapositive. If \(c(fg) = dR^\times \neq R^\times \), then \(d \notin R^\times \). Choose a maximal ideal \(m \) of \(R \) containing \((d) \). As above the natural map \(R \to R/m \) lifts to a homomorphism \(\varphi : R[X] \to (R/m)[X] \). Since
R is a Bézout domain, (d) is the ideal generated by the coefficients of fg. This means every coefficient of fg lies in \mathfrak{m}. That is, $\varphi(fg) = 0$. But $\varphi(fg) = \varphi(f)\varphi(g)$ and R/\mathfrak{m} is a field, so (WLOG) $\varphi(f) = 0$. This means that every coefficient of f lies in \mathfrak{m}. Hence so that $c(f) \neq R^\times$.

Although the proof of Theorem 5 seems general enough to handle the GCD case, it is in the last step that it breaks down. In general, even if the elements in a GCD are contained in a maximal ideal, the GCD itself need not be. For example, $(2, X)$ is maximal in $\mathbb{Z}[X]$ but the GCD of its generators is $\{\pm 1\}$.

\[\boxed{} \]