
GCDs and Gauss’ Lemma

R. C. Daileda

1 GCD Domains

Let R be a domain and S ⊂ R. We say c ∈ R is a common divisor of S if c|s for every s ∈ S. Equivalently,
S ⊂ (c) or (S) ⊂ (c). We say a common divisor d is a greatest common divisor (GCD) of S if every common
divisor c of S satisfies c|d. That is, d is a GCD of S if and only if (d) is the least element of the set

{(c) | c ∈ R, (S) ⊂ (c)}, (1)

provided the least element exists. When it exists, the GCD of S is only defined up to association: the
GCDs of S are the generators of the least element of (1). We will write a ≈ b to indicate that a, b ∈ R are
associates. In this case their common equivalence class is aR×. The association classes form a commutative
multiplicative monoid under the operation (aR×)(bR×) = abR× (see the appendix). Let gcdS denote the
association class consisting of the GCDs of S. Thus, the statement “d is a GCD of S” is equivalent to
d ∈ gcd S. A domain R is called a GCD domain if every finite subset of R has a GCD.

Suppose that R is a GCD domain and d is a GCD for a1, a2, . . . , am ∈ R. Write ai = dbi for each i, with
bi ∈ R. If c ∈ R and c|bi for all i, then cd|ai for all i. This means cd|d and hence c|1, so that c is a unit. It
follows that 1 is a GCD for the ai and hence gcd{ai} = R×.

Example 1.

a. In Z, gcd(49, 21) = {±7}. In Z[X], gcd(2, X) = {±1}. Notice that in the first case we have (49, 21) =
(7), while in the second (2, X) 6= (1) = Z[X].

b. Every PID R is a GCD domain. Given any S ⊂ R, (S) = (d) for some d ∈ R, and hence gcdS = dR×.

c. Every Bézout domain R is a GCD domain for similar reasons.

d. Every UFD is a GCD domain. See section 3.

e. Let F be a field. The monoid ring F [X;Q+
0 ] is an GCD domain but is not a UFD.

f. Every GCD domain is an AP domain,. See Theorem 1.

Remark 1.

a. There are now two different notions of the GCD of S: (i) the the smallest ideal containing S; (ii) (the
generators of) the smallest principal ideal containing S. These need not be the same! Take R = Z[X]
and S = {2, X}. The ideal-theoretic GCD is the proper ideal (2, X) = {f ∈ Z[X] | f(0) even}, while
the element-wise GCDs are {±1}. The reason for the distinction here (and in general) is that S does
not generate a principal ideal.

b. Consider R as a subring of its quotient field. If a, b ∈ R, b 6= 0 and b|a, then there is a unique c ∈ R
so that bc = a. We call c the factor or divisor complementary to b. We can use fractions to help us
represent it. If we embed R in its quotient field, bc = a becomes bc

1 = a
1 , which is equivalent to c

1 = a
b .

When b|a in R we will therefore write a
b to denote the divisor complementary to b.

Lemma 1. Let R be a domain and S, T ⊂ R.
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1. If c ∈ R is nonzero, S ⊂ (c) and gcdS exists, then gcd(S/c) =
gcdS

c
.

2. For any c in R, gcd(cS) = c · gcdS, provided gcd(cS) exists.

3. gcd(S ∪ T ) = gcd(S ∪ gcdT ), provided the GCDs exist.

Proof. 1. Let d ∈ gcdS. Then c|d by definition. So S ⊂ (d) implies S/c ⊂
(
d
c

)
. If S/c ⊂ (e), then S ⊂ (ce)

so that (d) ⊂ (ce) and hence
(
d
c

)
⊂ (e). This proves that gcd(S/c) = d

cR
× = gcdS

c .

2. If c = 0 there is nothing to prove. Otherwise, if gcd(cS) exists, then since cS ⊂ (c), the first part
implies

gcdS = gcd

(
cS

c

)
=

gcd(cS)

c
⇒ c · gcdS = gcd(cS).

3. For any d ∈ R, T ⊂ (d) if and only if gcdT ⊂ (d). So

S ∪ T ⊂ (d)⇔ S ⊂ (d) and T ⊂ (d)

⇔ S ⊂ (d) and gcdT ⊂ (d)

⇔ S ∪ gcdT ⊂ (d).

The result follows.

Lemma 2. Let R be a GCD domain, let c ∈ R and let S, T ⊂ R be finite. Then

gcd(S ∪ cT ) = gcd(S ∪ c · gcd(S ∪ T )).

Proof. Repeatedly apply parts 2 and 3 of Lemma 1:

gcd(S ∪ cT ) = gcd(gcd(S) ∪ cT )

= gcd(gcd(S ∪ cS) ∪ cT )

= gcd(S ∪ cS ∪ gcd(cT ))

= gcd(S ∪ cS ∪ c · gcd(T ))

= gcd(S ∪ gcd(cS ∪ c · gcd(T )))

= gcd(S ∪ c · gcd(S ∪ gcd(T )))

= gcd(S ∪ c · gcd(S ∪ T )).

Corollary 1. Let R be a GCD domain, a, b, c ∈ R. If gcd(a, b) = R×, then gcd(a, bc) = gcd(a, c).

Proof. Apply Lemma 2 with S = {a} and T = {b}.

Corollary 2. Let R be a GCD domain, a, b, c ∈ R. If gcd(a, b) = gcd(a, c) = R×, then gcd(a, bc) = R×.

Under the stronger hypothesis that R is a Bézout domain, Corollaries 1 and 2 have dramatically simpler
proofs. The examples of GCDs domains that we have seen so far are all AP domains. Corollary 2 can be
used to show that there’s a reason for this.

Theorem 1. Every GCD domain is an AP domain.

Proof. Let R be a GCD domain and suppose a ∈ R is irreducible. Suppose b, c ∈ R and a|bc. Then
gcd(a, bc) = aR× 6= R×. By Corollary 2, gcd(a, b) 6= R× or gcd(a, c) 6= R×. Without loss of generality
assume that gcd(a, b) 6= R×. Since the only divisors of a are its associates and units, it must be the case
that gcd(a, b) = aR×. In particular, a|b, and a is prime.
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2 Gauss’ Lemma

Let R be a GCD domain. Given a polynomial f(X) =
∑

i aiX
i ∈ R[X], we define the content of f to be

c(f) = gcd(a0, a1, a2, . . .).

The GCD exists because only finitely many of the ai are nonzero. When c(f) = R× say that f is primitive.
As we will see, in terms of factorization, the primitive polynomials over a domain play the same role the
monic polynomials over a field play. If 0 6= d ∈ c(f), then

f = d
∑
i

(ai
d

)
Xi = df̃ ,

where f̃ is primitive by part 1 of Lemma 1. Furthermore, by part 2 of Lemma 1 we have

c(ef) = e · c(f)

for any r ∈ R. In particular, if a ∈ R, then c(a) = a · c(1) = aR×. This means that a ∈ R is primitive if and
only if a ∈ R×. These are the only observations we need to prove Gauss’ lemma.

Lemma 3 (Gauss). Let R be a GCD domain and let f, g ∈ R[X]. If f and g are primitive, then fg is
primitive.

Proof. We prove the contrapositive by induction on n = deg fg. When n = 0, f, g ∈ R and c(fg) =
fgR× = (fR×)(gR×) = c(f)c(g). Since c(fg) 6= R×, this implies c(f) 6= R× or c(g) 6= R×. Now let n ≥ 1
and assume we have proven the result for all pairs of polynomials whose product has degree less than n.
Suppose deg fg = n. Write c(fg) = dR× 6= R×. Let f = aX` + O(X`−1) and g = bXm + O(Xm−1). Then
fg = abXn+O(Xn−1) and ab ∈ (d). Thus (ab, d) = (d) 6= R and either gcd(a, d) 6= R× or gcd(b, d) 6= R×, by
Lemma 2. Assume, without loss of generality, that gcd(a, d) = eR× 6= R×. Then e divides every coefficient
of fg−aXmg = (f−aX`)g. This implies that c((f−aX`)g) ⊂ (e) 6= R and hence (f−aX`)g is imprimitive.
Since deg(f − aX`) < deg f , deg(f − aX`)g < deg fg = n. The inductive hypothesis therefore implies that
either f1 = f − aX` or g is imprimitive.

If g is imprimitive, we’re finished. If g is primitive, write f1 = e1f̃1 where c(f1) = e1R
× and f̃1 ∈ R[X]

is primitive. Because deg f̃1 = deg f1, we can again apply the (contrapositive of the) inductive hypothesis to

conclude that f̃1g is primitive. Then

c(f1g) = c
(
e1f̃1g

)
= e1c

(
f̃1g
)

= e1R
× = c(f1).

It follows that c(f1) ⊂ (e). So e divides all the coefficients of f1 as well as the coefficients of aX`. Thus e
divides all of the coefficients of f1 + aXm = f . That is, c(f) ⊂ (e). Since (e) 6= R, c(f) 6= R× so that f is
imprimitive. This completes the induction.

Corollary 3. Let R be a GCD domain and let f, g ∈ R[X]. Then c(fg) = c(f)c(g).

Proof. If f = 0 or g = 0 there is nothing to prove, so we may assume f, g 6= 0. Then f = df̃ and g = eg̃,
where d ∈ c(f), e ∈ c(g) and f̃ , g̃ ∈ R[X] are primitive. Then f̃ g̃ is primitive by Gauss’ lemma so that

c(fg) = c
(
def̃ g̃

)
= de · c

(
f̃ g̃
)

= deR× = c(f)c(g).

There is a somewhat simpler and more intuitive proof of Gauss’ lemma when R is a a UFD. See Appendix
2.

Remark 2. Some authors define the content of a polynomial f to be the ideal c′(f) generated by coefficients.
Others define the content to be a specific greatest common divisor c′′(f) of the coefficients. Our definition
of c(f) lies somewhere in the middle. For any f ∈ R[X],

c′′(f) ∈ c(f) = gcd(c′(f)).
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3 Consequences

We now apply Gauss’ lemma and its corollary to study irreducibility and factorization in R[X].

Theorem 2. Let R be a GCD domain and let f ∈ R[X]. If f is primitive, then f is irreducible in R[X] if
and only if f is irreducible in R[X].

Proof. We prove the contrapositive. Suppose f is reducible in R[X]. Then f = gh for some g, h ∈ R[X]\R×.
If g ∈ R, then g ∈ c(f) = R×, which is impossible. So g 6∈ R. By symmetry, h 6∈ R. This means that
deg g,deg h ≥ 1. In particular, g, h ∈ Q(R)[X] cannot be units. Thus the factorization f = gh is nontrivial
and f is reducible in Q(R)[X].

Now suppose f is reducible in Q(R)[X]. Write f = gh with g, h ∈ Q(R)[X] of positive degree. Choose

a, b ∈ R so that ag, bh ∈ R[X]. Let d ∈ c(ag), e ∈ c(bh) and write ag = dg̃, bh = eh̃ with g̃, g̃ ∈ R[X]. Then

abR× = ab · c(f) = c(abf) = c((af)(bh)) = c(af)c(bf) = deR×.

Thus abf = deg̃h̃ = uabg̃h̃ for some u ∈ R×, so that f = (ug̃)h̃. This is a nontrivial factorization of f in

R[X], because deg g̃ = deg g ≥ 1 and deg h̃ = deg h ≥ 1. Hence f is reducible in R[X] if it is reducible in
Q(R)[X].

Remark 3. In the second paragraph, the final factorization of f over R can differ from the initial factor-
ization over Q(R). For instance, consider X2 over Z. It is certainly primitive, and X2 = (2X)(X/2) over

Q. In the notation of the proof, a = 1, b = 2, d = 2, e = 1, and g̃ = h̃. Since ab = de, u = 1, so our final
factorization over Z is just X2 = g̃h̃ = X ·X.

Example 2. Let F be a field and X, T independent variables. We claim that for any n ∈ N, Tn −X is
irreducible over F (X). As a polynomial in T over F [X], the nonzero coefficients of Tn −X are 1 and −X,
so Tn −X is primitive. So it suffices to prove that Tn −X is irreducible in F [X,T ], by Theorem 2. But as
polynomial in X over F [T ], Tn −X is also primitive, so that we need only check irreducibility in F (T )[X].
But here Tn −X is a linear polynomial over a field, so it is automatically irreducible. This prove the claim.

The proof of Theorem 2 can be modified to yield the following somewhat more precise statement.

Corollary 4. Let R be a GCD domain. If f ∈ R[X] is primitive and f = g1 · · · gr over Q(R), then
f = g̃1 · · · g̃r over R with g̃i a primitive Q(R)×-multiple of gi. In particular, deg g̃i = deg gi for all i.

Proof. Choose ai ∈ R so that aigi ∈ R[X] for all i and write aigi = big̃i, with bi ∈ c(aigi) and g̃i ∈ R[X]
primitive. By the corollary to Gauss’ lemma

a1 · · · arR× = c(a1 · · · arf) = c((a1g1) · · · (argr)) = b1 · · · brR×.

Therefore
a1 · · · arf = b1 · · · br g̃1 · · · g̃r = ua1 · · · arg̃1 · · · g̃r

for some u ∈ R×. The result now follows upon replacing ug̃1 with g̃1.

Corollary 5. Let R be a GCD domain and let f ∈ R[X] be monic. If a ∈ Q(R) is a root of f , then a ∈ R.
That is, R is integrally closed in its quotient field.

Proof. Write f = (X − a)g over Q(R). Since f is monic, it is primitive. Since X − a is also monic, g is
monic. By Corollary 4, there exist r, s ∈ Q(R) so that r(X − a), sg ∈ R[X] are primitive and rs = 1. Since
the leading coefficients of r(X − a) and rg are r, s, we must have r, s ∈ R. But then the equation rs = 1
implies that r, s ∈ R×. Hence g,X − a ∈ R[X] and so a ∈ R.
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Now let R be a UFD. If a1, a2, . . . , an ∈ R, then there are primes/irreducibles πj , exponents eij ∈ N0

and units ui ∈ R× so that

ai = ui

r∏
j=1

πij
j

for i = 1, 2, . . . , n. We can assume every factorization involves the same set of primes because we have
allowed zero exponents. In this setting, the eij are unique. Let nj = mini{nij} and set

d =

r∏
j=1

π
nj

j .

Then d is a common divisor of the ai. If e|ai and π is a prime dividing e, then π|ai. Uniqueness of prime
factorizations implies that π is associate to πj for some j. Thus

e = u

r∏
j=1

π
`j
j , `j ∈ N0, u ∈ R×.

Since the hypotheses apply to ai

e as well,

ai
e

= v

r∏
j=1

π
mj

j , mj ∈ N0, v ∈ R×.

Thus

ai = e
ai
e

= uv

r∏
j=1

π
`j+mj

j .

Uniqueness of prime factorizations now implies that `j + mj = nij , which means `j ≤ nij . If e|ai for all i,
then `j ≤ nij for all i, so that `j ≤ nj . This implies that e|d. Hence d ∈ gcd(a1, . . . , an). This proves that
R is a GCD domain. We will use this fact in the proof of our final result.

Theorem 3. If R is a UFD, then R[X] is a UFD.

Proof. Let f ∈ R[X] \ R×. Write f = df̃ with d ∈ R and f̃ ∈ R[X] primitive. Because Q(R) is a field,

Q(R)[X] is a UFD. We can therefore write f̃ = p1 · · · ps with pi ∈ Q(R)[X] irreducible. By Lemma 4,

f̃ = p̃1 · · · p̃s with p̃i ∈ R[X] a primitive Q(R)×-multiple of pi. Because p̃i is a unit multiple of pi, it is
irreducible over Q(R). By Theorem 2, p̃i is irreducible over R. If d = π1 · · ·πr is the prime/irreducible
factorization of d in R, we then have the factorization

f = df̃ = π1 · · ·πrp̃1 · · · p̃s. (2)

in R[X]. Since an irreducible in R remains irreducible in R[X] (exercise), (2) is an irreducible factorization
of f over R.

We now need to show that every irreducible in R[X] is prime. Let p ∈ R[X] be irreducible and suppose
p|fg for some f, g ∈ R[X]. If d ∈ c(p) and we write p = dp̃ with p̃ ∈ R[X] primitive, then irreducibility
implies that d ∈ R[X]× = R×. Hence p is already primitive. Theorem 2 tells us that p is irreducible over
Q(R). Since Q(R)[X] is a UFD, p is prime in that ring. So, without loss of generality, p|f in Q(R)[X]. Set
f = pq with q ∈ Q(R)[X]. Choose a ∈ R so that aq ∈ R[X] and set aq = eq̃ with c(aq) = eR× and q̃ ∈ R[X]
primitive. Then

ac(f) = c(af) = c(p(aq)) = c(p)c(aq) = eR× ⇒ a|e ⇒ q =
e

a
q̃ ∈ R[X].

Thus p divides f over R, and we’re finished.

Remark 4. It is also true that if R is a GCD domain, then R[X] is a GCD domain.
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Example 3. a. Since Z is a UFD, so is Z[X]. But then Z[X,Y ] = Z[X][Y ] is a UFD. And this im-
plies Z[X,Y, Z] = Z[X,Y ][Z] is a UFD. We can clearly continue this on indefinitely to conclude that
Z[X1, X2, . . . Xn] is a UFD for all n ≥ 1 (Z can be replaced by any UFD).

b. In Z[X,Y ] we have 60XY + 30Y + 40X + 20 = 10(6XY + 3Y +X + 2) = 2 · 5 · (2X + 1)(3Y + 2). By
Theorem 2, any primitive linear polynomial over Z is irreducible. So 2X + 1 ∈ Z[X] is irreducible. It
remains irreducible in Z[X,Y ]. Likewise, 3Y + 2 is irreducible in Z[X,Y ]. So we have the irreducible
factorization

60XY + 30Y + 40X + 20 = 2 · 5 · (2X + 1)(3Y + 2).

4 Appendix 1: Quotients of Monoids

Let M be a (multiplicative) commutative monoid and let G be a subgroup of M . For a, b ∈M , define a ∼= b
(mod G) if and only if a = bg for some g ∈ G. Because G contains the identity of M and the inverse of
each of its elements, ∼= is an equivalence relation. The equivalence class of a ∈M is clearly aG. Moreover, if
a, b ∈M , then (aG)(bG) = abG, since G contains the identity and M is commutative. This binary operation
makes M/ ∼= into a commutative monoid. Associativity is immediate and if e ∈ M is the identity, then eG
is the identity in M/ ∼=.

This seems to mimic the situation with quotient groups quite well, with one exception. While the “cosets”
aG still partition M , they need not all have the same cardinality. This is because the map λa : G → aG
given by g 7→ ag need not be one-to-one. So there’s no analogue of Lagrange’s theorem, in general. If we
assume M is cancellative, however, the map λa is a bijection for all a ∈ M , and Lagrange’s theorem holds
with the same proof.

The group G acts on M by left translation. The orbit of a ∈ M is Ga = aG. If H = Stab(a), then
according to the orbit-stabilizer theorem, |aG| = [G : H]. Hence, although it need not be the case that
|aG| = |G|, we always at least have |aG|

∣∣|G|.
Example 4. Let R be a ring. Then R is a monoid under multiplication and R× is a subgroup. The

congruence modulo R× is simply the associate relation, and its equivalence classes are the sets aR×, a ∈ R.
The element 0 prevents R from being cancellative and its class 0R× = {0} is usually exceptionally small.
If R is a domain, then λa is a bijection for all nonzero a ∈ R, so that every nonzero association class has
cardinality |R×|. Moreover, the association classes are in one-to-one correspondence with the principal ideals
in R, via aR× 7→ (a).

5 Appendix 2: Gauss’ Lemma over Other Domains

For certain subclasses of the GCD domains, Gauss’ lemma can be proved by simpler, more ideal theoretic
means.

Theorem 4. Let R be a UFD and let f, g ∈ R[X]. If f and g are primitive, then fg is primitive.

Proof. We prove the contrapositive. If c(fg) = dR× 6= R×, then d 6∈ R×. Because R is UFD, It follows
that d must have a prime factor p ∈ R. Consider the natural map R → R/(p). It lifts to a homomorphism
ϕ : R[X]→ (R/(p))[X] by acting on coefficients. Since p|d ∈ c(fc), p divides the coefficients of fg. That is,
ϕ(fg) = 0. But ϕ(fg) = ϕ(f)ϕ(g) and R/(p) is a domain, so (WLOG) ϕ(f) = 0. This means that every
coefficient of f is divisible by p so that c(f) 6= R×.

Theorem 5. Let R be a B’ezout domain and let f, g ∈ R[X]. If f and g are primitive, then fg is primitive.

Proof. We prove the contrapositive. If c(fg) = dR× 6= R×, then d 6∈ R×. Choose a maximal ideal m of R
containing (d). As above the natural map R→ R/m lifts to a homomorphism ϕ : R[X]→ (R/m)[X]. Since
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R is a Bézout domain, (d) is the ideal generated by the coefficients of fg. This means every coefficient of fg
lies in m. That is, ϕ(fg) = 0. But ϕ(fg) = ϕ(f)ϕ(g) and R/m is a field, so (WLOG) ϕ(f) = 0. This means
that every coefficient of f lies in m. Hence so that c(f) 6= R×.

Although the proof of Theorem 5 seems general enough to handle the GCD case, it is in the last step
that it breaks down. In general, even if the elements in a GCD are contained in a maximal ideal, the GCD
itself need not be. For example, (2, X) is maximal in Z[X] but the GCD of its generators is {±1}.
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