GCDs and Gauss' Lemma

R. C. Daileda

1 GCD Domains

Let R be a domain and $S \subset R$. We say $c \in R$ is a common divisor of S if $c \mid s$ for every $s \in S$. Equivalently, $S \subset(c)$ or $(S) \subset(c)$. We say a common divisor d is a greatest common divisor (GCD) of S if every common divisor c of S satisfies $c \mid d$. That is, d is a GCD of S if and only if (d) is the least element of the set

$$
\begin{equation*}
\{(c) \mid c \in R,(S) \subset(c)\} \tag{1}
\end{equation*}
$$

provided the least element exists. When it exists, the GCD of S is only defined up to association: the GCDs of S are the generators of the least element of (1). We will write $a \approx b$ to indicate that $a, b \in R$ are associates. In this case their common equivalence class is $a R^{\times}$. The association classes form a commutative multiplicative monoid under the operation $\left(a R^{\times}\right)\left(b R^{\times}\right)=a b R^{\times}$(see the appendix). Let gcd S denote the association class consisting of the GCDs of S. Thus, the statement " d is a GCD of S " is equivalent to $d \in \operatorname{gcd} S$. A domain R is called a $G C D$ domain if every finite subset of R has a GCD.

Suppose that R is a GCD domain and d is a GCD for $a_{1}, a_{2}, \ldots, a_{m} \in R$. Write $a_{i}=d b_{i}$ for each i, with $b_{i} \in R$. If $c \in R$ and $c \mid b_{i}$ for all i, then $c d \mid a_{i}$ for all i. This means $c d \mid d$ and hence $c \mid 1$, so that c is a unit. It follows that 1 is a GCD for the a_{i} and hence $\operatorname{gcd}\left\{a_{i}\right\}=R^{\times}$.

Example 1.

a. In $\mathbb{Z}, \operatorname{gcd}(49,21)=\{ \pm 7\}$. In $\mathbb{Z}[X], \operatorname{gcd}(2, X)=\{ \pm 1\}$. Notice that in the first case we have $(49,21)=$ (7), while in the second $(2, X) \neq(1)=\mathbb{Z}[X]$.
b. Every PID R is a GCD domain. Given any $S \subset R,(S)=(d)$ for some $d \in R$, and hence gcd $S=d R^{\times}$.
c. Every Bézout domain R is a GCD domain for similar reasons.
d. Every UFD is a GCD domain. See section 3.
e. Let F be a field. The monoid ring $F\left[X ; \mathbb{Q}_{0}^{+}\right]$is an GCD domain but is not a UFD.
f. Every GCD domain is an AP domain,. See Theorem 1.

Remark 1.

a. There are now two different notions of the GCD of S : (i) the the smallest ideal containing S; (ii) (the generators of) the smallest principal ideal containing S. These need not be the same! Take $R=\mathbb{Z}[X]$ and $S=\{2, X\}$. The ideal-theoretic GCD is the proper ideal $(2, X)=\{f \in \mathbb{Z}[X] \mid f(0)$ even $\}$, while the element-wise GCDs are $\{ \pm 1\}$. The reason for the distinction here (and in general) is that S does not generate a principal ideal.
b. Consider R as a subring of its quotient field. If $a, b \in R, b \neq 0$ and $b \mid a$, then there is a unique $c \in R$ so that $b c=a$. We call c the factor or divisor complementary to b. We can use fractions to help us represent it. If we embed R in its quotient field, $b c=a$ becomes $\frac{b c}{1}=\frac{a}{1}$, which is equivalent to $\frac{c}{1}=\frac{a}{b}$. When $b \mid a$ in R we will therefore write $\frac{a}{b}$ to denote the divisor complementary to b.

Lemma 1. Let R be a domain and $S, T \subset R$.

1. If $c \in R$ is nonzero, $S \subset(c)$ and $\operatorname{gcd} S$ exists, then $\operatorname{gcd}(S / c)=\frac{\operatorname{gcd} S}{c}$.
2. For any c in $R, \operatorname{gcd}(c S)=c \cdot \operatorname{gcd} S$, provided $\operatorname{gcd}(c S)$ exists.
3. $\operatorname{gcd}(S \cup T)=\operatorname{gcd}(S \cup \operatorname{gcd} T)$, provided the $G C D$ s exist.

Proof. 1. Let $d \in \operatorname{gcd} S$. Then $c \mid d$ by definition. So $S \subset(d)$ implies $S / c \subset\left(\frac{d}{c}\right)$. If $S / c \subset(e)$, then $S \subset(c e)$ so that $(d) \subset(c e)$ and hence $\left(\frac{d}{c}\right) \subset(e)$. This proves that $\operatorname{gcd}(S / c)=\frac{d}{c} R^{\times}=\frac{\operatorname{gcd} S}{c}$.
2. If $c=0$ there is nothing to prove. Otherwise, if $\operatorname{gcd}(c S)$ exists, then since $c S \subset(c)$, the first part implies

$$
\operatorname{gcd} S=\operatorname{gcd}\left(\frac{c S}{c}\right)=\frac{\operatorname{gcd}(c S)}{c} \Rightarrow c \cdot \operatorname{gcd} S=\operatorname{gcd}(c S)
$$

3. For any $d \in R, T \subset(d)$ if and only if $\operatorname{gcd} T \subset(d)$. So

$$
\begin{aligned}
S \cup T \subset(d) & \Leftrightarrow S \subset(d) \text { and } T \subset(d) \\
& \Leftrightarrow S \subset(d) \text { and } \operatorname{gcd} T \subset(d) \\
& \Leftrightarrow S \cup \operatorname{gcd} T \subset(d) .
\end{aligned}
$$

The result follows.

Lemma 2. Let R be a $G C D$ domain, let $c \in R$ and let $S, T \subset R$ be finite. Then

$$
\operatorname{gcd}(S \cup c T)=\operatorname{gcd}(S \cup c \cdot \operatorname{gcd}(S \cup T))
$$

Proof. Repeatedly apply parts 2 and 3 of Lemma 1:

$$
\begin{aligned}
\operatorname{gcd}(S \cup c T) & =\operatorname{gcd}(\operatorname{gcd}(S) \cup c T) \\
& =\operatorname{gcd}(\operatorname{gcd}(S \cup c S) \cup c T) \\
& =\operatorname{gcd}(S \cup c S \cup \operatorname{gcd}(c T)) \\
& =\operatorname{gcd}(S \cup c S \cup c \cdot \operatorname{gcd}(T)) \\
& =\operatorname{gcd}(S \cup \operatorname{gcd}(c S \cup c \cdot \operatorname{gcd}(T))) \\
& =\operatorname{gcd}(S \cup c \cdot \operatorname{gcd}(S \cup \operatorname{gcd}(T))) \\
& =\operatorname{gcd}(S \cup c \cdot \operatorname{gcd}(S \cup T))
\end{aligned}
$$

Corollary 1. Let R be a GCD domain, $a, b, c \in R$. If $\operatorname{gcd}(a, b)=R^{\times}$, then $\operatorname{gcd}(a, b c)=\operatorname{gcd}(a, c)$.
Proof. Apply Lemma 2 with $S=\{a\}$ and $T=\{b\}$.
Corollary 2. Let R be a GCD domain, $a, b, c \in R$. If $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, c)=R^{\times}$, then $\operatorname{gcd}(a, b c)=R^{\times}$.

Under the stronger hypothesis that R is a Bézout domain, Corollaries 1 and 2 have dramatically simpler proofs. The examples of GCDs domains that we have seen so far are all AP domains. Corollary 2 can be used to show that there's a reason for this.

Theorem 1. Every $G C D$ domain is an AP domain.

Proof. Let R be a GCD domain and suppose $a \in R$ is irreducible. Suppose $b, c \in R$ and $a \mid b c$. Then $\operatorname{gcd}(a, b c)=a R^{\times} \neq R^{\times}$. By Corollary $2, \operatorname{gcd}(a, b) \neq R^{\times}$or $\operatorname{gcd}(a, c) \neq R^{\times}$. Without loss of generality assume that $\operatorname{gcd}(a, b) \neq R^{\times}$. Since the only divisors of a are its associates and units, it must be the case that $\operatorname{gcd}(a, b)=a R^{\times}$. In particular, $a \mid b$, and a is prime.

2 Gauss' Lemma

Let R be a GCD domain. Given a polynomial $f(X)=\sum_{i} a_{i} X^{i} \in R[X]$, we define the content of f to be

$$
c(f)=\operatorname{gcd}\left(a_{0}, a_{1}, a_{2}, \ldots\right)
$$

The GCD exists because only finitely many of the a_{i} are nonzero. When $c(f)=R^{\times}$say that f is primitive. As we will see, in terms of factorization, the primitive polynomials over a domain play the same role the monic polynomials over a field play. If $0 \neq d \in c(f)$, then

$$
f=d \sum_{i}\left(\frac{a_{i}}{d}\right) X^{i}=d \widetilde{f}
$$

where \tilde{f} is primitive by part 1 of Lemma 1 . Furthermore, by part 2 of Lemma 1 we have

$$
c(e f)=e \cdot c(f)
$$

for any $r \in R$. In particular, if $a \in R$, then $c(a)=a \cdot c(1)=a R^{\times}$. This means that $a \in R$ is primitive if and only if $a \in R^{\times}$. These are the only observations we need to prove Gauss' lemma.
Lemma 3 (Gauss). Let R be a $G C D$ domain and let $f, g \in R[X]$. If f and g are primitive, then $f g$ is primitive.

Proof. We prove the contrapositive by induction on $n=\operatorname{deg} f g$. When $n=0, f, g \in R$ and $c(f g)=$ $f g R^{\times}=\left(f R^{\times}\right)\left(g R^{\times}\right)=c(f) c(g)$. Since $c(f g) \neq R^{\times}$, this implies $c(f) \neq R^{\times}$or $c(g) \neq R^{\times}$. Now let $n \geq 1$ and assume we have proven the result for all pairs of polynomials whose product has degree less than n. Suppose $\operatorname{deg} f g=n$. Write $c(f g)=d R^{\times} \neq R^{\times}$. Let $f=a X^{\ell}+O\left(X^{\ell-1}\right)$ and $g=b X^{m}+O\left(X^{m-1}\right)$. Then $f g=a b X^{n}+O\left(X^{n-1}\right)$ and $a b \in(d)$. Thus $(a b, d)=(d) \neq R$ and either $\operatorname{gcd}(a, d) \neq R^{\times}$or $\operatorname{gcd}(b, d) \neq R^{\times}$, by Lemma 2. Assume, without loss of generality, that $\operatorname{gcd}(a, d)=e R^{\times} \neq R^{\times}$. Then e divides every coefficient of $f g-a X^{m} g=\left(f-a X^{\ell}\right) g$. This implies that $c\left(\left(f-a X^{\ell}\right) g\right) \subset(e) \neq R$ and hence $\left(f-a X^{\ell}\right) g$ is imprimitive. Since $\operatorname{deg}\left(f-a X^{\ell}\right)<\operatorname{deg} f, \operatorname{deg}\left(f-a X^{\ell}\right) g<\operatorname{deg} f g=n$. The inductive hypothesis therefore implies that either $f_{1}=f-a X^{\ell}$ or g is imprimitive.

If g is imprimitive, we're finished. If g is primitive, write $f_{1}=e_{1} \widetilde{f}_{1}$ where $c\left(f_{1}\right)=e_{1} R^{\times}$and $\widetilde{f}_{1} \in R[X]$ is primitive. Because $\operatorname{deg} \tilde{f}_{1}=\operatorname{deg} f_{1}$, we can again apply the (contrapositive of the) inductive hypothesis to conclude that $\widetilde{f}_{1} g$ is primitive. Then

$$
c\left(f_{1} g\right)=c\left(e_{1} \widetilde{f}_{1} g\right)=e_{1} c\left(\widetilde{f}_{1} g\right)=e_{1} R^{\times}=c\left(f_{1}\right)
$$

It follows that $c\left(f_{1}\right) \subset(e)$. So e divides all the coefficients of f_{1} as well as the coefficients of $a X^{\ell}$. Thus e divides all of the coefficients of $f_{1}+a X^{m}=f$. That is, $c(f) \subset(e)$. Since $(e) \neq R, c(f) \neq R^{\times}$so that f is imprimitive. This completes the induction.
Corollary 3. Let R be a GCD domain and let $f, g \in R[X]$. Then $c(f g)=c(f) c(g)$.
Proof. If $f=0$ or $g=0$ there is nothing to prove, so we may assume $f, g \neq 0$. Then $f=d \widetilde{f}$ and $g=e \widetilde{g}$, where $d \in c(f), e \in c(g)$ and $\widetilde{f}, \widetilde{g} \in R[X]$ are primitive. Then $\widetilde{f} \widetilde{g}$ is primitive by Gauss' lemma so that

$$
c(f g)=c(d e \widetilde{f} \widetilde{g})=d e \cdot c(\tilde{f} \tilde{g})=d e R^{\times}=c(f) c(g)
$$

There is a somewhat simpler and more intuitive proof of Gauss' lemma when R is a a UFD. See Appendix 2.

Remark 2. Some authors define the content of a polynomial f to be the ideal $c^{\prime}(f)$ generated by coefficients. Others define the content to be a specific greatest common divisor $c^{\prime \prime}(f)$ of the coefficients. Our definition of $c(f)$ lies somewhere in the middle. For any $f \in R[X]$,

$$
c^{\prime \prime}(f) \in c(f)=\operatorname{gcd}\left(c^{\prime}(f)\right)
$$

3 Consequences

We now apply Gauss' lemma and its corollary to study irreducibility and factorization in $R[X]$.
Theorem 2. Let R be a GCD domain and let $f \in R[X]$. If f is primitive, then f is irreducible in $R[X]$ if and only if f is irreducible in $R[X]$.

Proof. We prove the contrapositive. Suppose f is reducible in $R[X]$. Then $f=g h$ for some $g, h \in R[X] \backslash R^{\times}$. If $g \in R$, then $g \in c(f)=R^{\times}$, which is impossible. So $g \notin R$. By symmetry, $h \notin R$. This means that $\operatorname{deg} g, \operatorname{deg} h \geq 1$. In particular, $g, h \in Q(R)[X]$ cannot be units. Thus the factorization $f=g h$ is nontrivial and f is reducible in $Q(R)[X]$.

Now suppose f is reducible in $Q(R)[X]$. Write $f=g h$ with $g, h \in Q(R)[X]$ of positive degree. Choose $a, b \in R$ so that $a g, b h \in R[X]$. Let $d \in c(a g), e \in c(b h)$ and write $a g=d \widetilde{g}, b h=e \widetilde{h}$ with $\widetilde{g}, \widetilde{g} \in R[X]$. Then

$$
a b R^{\times}=a b \cdot c(f)=c(a b f)=c((a f)(b h))=c(a f) c(b f)=d e R^{\times} .
$$

Thus $a b f=d e \widetilde{g} \tilde{h}=u a b \widetilde{g} \widetilde{h}$ for some $u \in{\underset{\sim}{R}}^{\times}$, so that $f=(u \widetilde{g}) \widetilde{h}$. This is a nontrivial factorization of f in $R[X]$, because $\operatorname{deg} \widetilde{g}=\operatorname{deg} g \geq 1$ and $\operatorname{deg} \widetilde{h}=\operatorname{deg} h \geq 1$. Hence f is reducible in $R[X]$ if it is reducible in $Q(R)[X]$.

Remark 3. In the second paragraph, the final factorization of f over R can differ from the initial factorization over $Q(R)$. For instance, consider X^{2} over \mathbb{Z}. It is certainly primitive, and $X^{2}=(2 X)(X / 2)$ over \mathbb{Q}. In the notation of the proof, $a=1, b=2, d=2, e=1$, and $\widetilde{g}=\widetilde{h}$. Since $a b=d e, u=1$, so our final factorization over \mathbb{Z} is just $X^{2}=\widetilde{g} \widetilde{h}=X \cdot X$.

Example 2. Let F be a field and X, T independent variables. We claim that for any $n \in \mathbb{N}, T^{n}-X$ is irreducible over $F(X)$. As a polynomial in T over $F[X]$, the nonzero coefficients of $T^{n}-X$ are 1 and $-X$, so $T^{n}-X$ is primitive. So it suffices to prove that $T^{n}-X$ is irreducible in $F[X, T]$, by Theorem 2. But as polynomial in X over $F[T], T^{n}-X$ is also primitive, so that we need only check irreducibility in $F(T)[X]$. But here $T^{n}-X$ is a linear polynomial over a field, so it is automatically irreducible. This prove the claim.

The proof of Theorem 2 can be modified to yield the following somewhat more precise statement.
Corollary 4. Let R be a GCD domain. If $f \in R[X]$ is primitive and $f=g_{1} \cdots g_{r}$ over $Q(R)$, then $f=\widetilde{g_{1}} \cdots \widetilde{g_{r}}$ over R with $\widetilde{g_{i}}$ a primitive $Q(R)^{\times}$-multiple of g_{i}. In particular, $\operatorname{deg} \widetilde{g_{i}}=\operatorname{deg} g_{i}$ for all i.

Proof. Choose $a_{i} \in R$ so that $a_{i} g_{i} \in R[X]$ for all i and write $a_{i} g_{i}=b_{i} \widetilde{g}_{i}$, with $b_{i} \in c\left(a_{i} g_{i}\right)$ and $\widetilde{g}_{i} \in R[X]$ primitive. By the corollary to Gauss' lemma

$$
a_{1} \cdots a_{r} R^{\times}=c\left(a_{1} \cdots a_{r} f\right)=c\left(\left(a_{1} g_{1}\right) \cdots\left(a_{r} g_{r}\right)\right)=b_{1} \cdots b_{r} R^{\times} .
$$

Therefore

$$
a_{1} \cdots a_{r} f=b_{1} \cdots b_{r} \widetilde{g_{1}} \cdots \widetilde{g_{r}}=u a_{1} \cdots a_{r} \widetilde{g_{1}} \cdots \widetilde{g_{r}}
$$

for some $u \in R^{\times}$. The result now follows upon replacing $u \widetilde{g_{1}}$ with $\widetilde{g_{1}}$.

Corollary 5. Let R be a GCD domain and let $f \in R[X]$ be monic. If $a \in Q(R)$ is a root of f, then $a \in R$. That is, R is integrally closed in its quotient field.

Proof. Write $f=(X-a) g$ over $Q(R)$. Since f is monic, it is primitive. Since $X-a$ is also monic, g is monic. By Corollary 4, there exist $r, s \in Q(R)$ so that $r(X-a), s g \in R[X]$ are primitive and $r s=1$. Since the leading coefficients of $r(X-a)$ and $r g$ are r, s, we must have $r, s \in R$. But then the equation $r s=1$ implies that $r, s \in R^{\times}$. Hence $g, X-a \in R[X]$ and so $a \in R$.

Now let R be a UFD. If $a_{1}, a_{2}, \ldots, a_{n} \in R$, then there are primes/irreducibles π_{j}, exponents $e_{i j} \in \mathbb{N}_{0}$ and units $u_{i} \in R^{\times}$so that

$$
a_{i}=u_{i} \prod_{j=1}^{r} \pi_{j}^{i j}
$$

for $i=1,2, \ldots, n$. We can assume every factorization involves the same set of primes because we have allowed zero exponents. In this setting, the $e_{i j}$ are unique. Let $n_{j}=\min _{i}\left\{n_{i j}\right\}$ and set

$$
d=\prod_{j=1}^{r} \pi_{j}^{n_{j}}
$$

Then d is a common divisor of the a_{i}. If $e \mid a_{i}$ and π is a prime dividing e, then $\pi \mid a_{i}$. Uniqueness of prime factorizations implies that π is associate to π_{j} for some j. Thus

$$
e=u \prod_{j=1}^{r} \pi_{j}^{\ell_{j}}, \quad \ell_{j} \in \mathbb{N}_{0}, u \in R^{\times}
$$

Since the hypotheses apply to $\frac{a_{i}}{e}$ as well,

$$
\frac{a_{i}}{e}=v \prod_{j=1}^{r} \pi_{j}^{m_{j}}, \quad m_{j} \in \mathbb{N}_{0}, \quad v \in R^{\times}
$$

Thus

$$
a_{i}=e \frac{a_{i}}{e}=u v \prod_{j=1}^{r} \pi_{j}^{\ell_{j}+m_{j}}
$$

Uniqueness of prime factorizations now implies that $\ell_{j}+m_{j}=n_{i j}$, which means $\ell_{j} \leq n_{i j}$. If $e \mid a_{i}$ for all i, then $\ell_{j} \leq n_{i j}$ for all i, so that $\ell_{j} \leq n_{j}$. This implies that $e \mid d$. Hence $d \in \operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$. This proves that R is a GCD domain. We will use this fact in the proof of our final result.

Theorem 3. If R is a UFD, then $R[X]$ is a UFD.

Proof. Let $f \in R[X] \backslash R^{\times}$. Write $f=d \tilde{f}$ with $d \in R$ and $\tilde{f} \in R[X]$ primitive. Because $Q(R)$ is a field, $Q(R)[X]$ is a UFD. We can therefore write $\widetilde{f}=p_{1} \cdots p_{s}$ with $p_{i} \in Q(R)[X]$ irreducible. By Lemma 4, $\widetilde{f}=\widetilde{p_{1}} \cdots \widetilde{p_{s}}$ with $\widetilde{p}_{i} \in R[X]$ a primitive $Q(R)^{\times}$-multiple of p_{i}. Because \widetilde{p}_{i} is a unit multiple of p_{i}, it is irreducible over $Q(R)$. By Theorem 2, \widetilde{p}_{i} is irreducible over R. If $d=\pi_{1} \cdots \pi_{r}$ is the prime/irreducible factorization of d in R, we then have the factorization

$$
\begin{equation*}
f=d \tilde{f}=\pi_{1} \cdots \pi_{r} \widetilde{p_{1}} \cdots \widetilde{p_{s}} \tag{2}
\end{equation*}
$$

in $R[X]$. Since an irreducible in R remains irreducible in $R[X]$ (exercise), (2) is an irreducible factorization of f over R.

We now need to show that every irreducible in $R[X]$ is prime. Let $p \in R[X]$ be irreducible and suppose $p \mid f g$ for some $f, g \in R[X]$. If $d \in c(p)$ and we write $p=d \widetilde{p}$ with $\widetilde{p} \in R[X]$ primitive, then irreducibility implies that $d \in R[X]^{\times}=R^{\times}$. Hence p is already primitive. Theorem 2 tells us that p is irreducible over $Q(R)$. Since $Q(R)[X]$ is a UFD, p is prime in that ring. So, without loss of generality, $p \mid f$ in $Q(R)[X]$. Set $f=p q$ with $q \in Q(R)[X]$. Choose $a \in R$ so that $a q \in R[X]$ and set $a q=e \widetilde{q}$ with $c(a q)=e R^{\times}$and $\widetilde{q} \in R[X]$ primitive. Then

$$
a c(f)=c(a f)=c(p(a q))=c(p) c(a q)=e R^{\times} \Rightarrow a \left\lvert\, e \Rightarrow q=\frac{e}{a} \widetilde{q} \in R[X] .\right.
$$

Thus p divides f over R, and we're finished.
Remark 4. It is also true that if R is a GCD domain, then $R[X]$ is a GCD domain.

Example 3. a. Since \mathbb{Z} is a UFD, so is $\mathbb{Z}[X]$. But then $\mathbb{Z}[X, Y]=\mathbb{Z}[X][Y]$ is a UFD. And this implies $\mathbb{Z}[X, Y, Z]=\mathbb{Z}[X, Y][Z]$ is a UFD. We can clearly continue this on indefinitely to conclude that $\mathbb{Z}\left[X_{1}, X_{2}, \ldots X_{n}\right]$ is a UFD for all $n \geq 1$ (\mathbb{Z} can be replaced by any UFD).
b. In $\mathbb{Z}[X, Y]$ we have $60 X Y+30 Y+40 X+20=10(6 X Y+3 Y+X+2)=2 \cdot 5 \cdot(2 X+1)(3 Y+2)$. By Theorem 2 , any primitive linear polynomial over \mathbb{Z} is irreducible. So $2 X+1 \in \mathbb{Z}[X]$ is irreducible. It remains irreducible in $\mathbb{Z}[X, Y]$. Likewise, $3 Y+2$ is irreducible in $\mathbb{Z}[X, Y]$. So we have the irreducible factorization

$$
60 X Y+30 Y+40 X+20=2 \cdot 5 \cdot(2 X+1)(3 Y+2)
$$

4 Appendix 1: Quotients of Monoids

Let M be a (multiplicative) commutative monoid and let G be a subgroup of M. For $a, b \in M$, define $a \cong b$ $(\bmod G)$ if and only if $a=b g$ for some $g \in G$. Because G contains the identity of M and the inverse of each of its elements, \cong is an equivalence relation. The equivalence class of $a \in M$ is clearly $a G$. Moreover, if $a, b \in M$, then $(a G)(b G)=a b G$, since G contains the identity and M is commutative. This binary operation makes M / \cong into a commutative monoid. Associativity is immediate and if $e \in M$ is the identity, then $e G$ is the identity in M / \cong.

This seems to mimic the situation with quotient groups quite well, with one exception. While the "cosets" $a G$ still partition M, they need not all have the same cardinality. This is because the map $\lambda_{a}: G \rightarrow a G$ given by $g \mapsto a g$ need not be one-to-one. So there's no analogue of Lagrange's theorem, in general. If we assume M is cancellative, however, the map λ_{a} is a bijection for all $a \in M$, and Lagrange's theorem holds with the same proof.

The group G acts on M by left translation. The orbit of $a \in M$ is $G a=a G$. If $H=\operatorname{Stab}(a)$, then according to the orbit-stabilizer theorem, $|a G|=[G: H]$. Hence, although it need not be the case that $|a G|=|G|$, we always at least have $|a G|||G|$.

Example 4. Let R be a ring. Then R is a monoid under multiplication and R^{\times}is a subgroup. The congruence modulo R^{\times}is simply the associate relation, and its equivalence classes are the sets $a R^{\times}, a \in R$. The element 0 prevents R from being cancellative and its class $0 R^{\times}=\{0\}$ is usually exceptionally small. If R is a domain, then λ_{a} is a bijection for all nonzero $a \in R$, so that every nonzero association class has cardinality $\left|R^{\times}\right|$. Moreover, the association classes are in one-to-one correspondence with the principal ideals in R, via $a R^{\times} \mapsto(a)$.

5 Appendix 2: Gauss' Lemma over Other Domains

For certain subclasses of the GCD domains, Gauss' lemma can be proved by simpler, more ideal theoretic means.

Theorem 4. Let R be a UFD and let $f, g \in R[X]$. If f and g are primitive, then $f g$ is primitive.

Proof. We prove the contrapositive. If $c(f g)=d R^{\times} \neq R^{\times}$, then $d \notin R^{\times}$. Because R is UFD, It follows that d must have a prime factor $p \in R$. Consider the natural map $R \rightarrow R /(p)$. It lifts to a homomorphism $\varphi: R[X] \rightarrow(R /(p))[X]$ by acting on coefficients. Since $p \mid d \in c(f c), p$ divides the coefficients of $f g$. That is, $\varphi(f g)=0$. But $\varphi(f g)=\varphi(f) \varphi(g)$ and $R /(p)$ is a domain, so (WLOG) $\varphi(f)=0$. This means that every coefficient of f is divisible by p so that $c(f) \neq R^{\times}$.

Theorem 5. Let R be a B'ezout domain and let $f, g \in R[X]$. If f and g are primitive, then $f g$ is primitive.

Proof. We prove the contrapositive. If $c(f g)=d R^{\times} \neq R^{\times}$, then $d \notin R^{\times}$. Choose a maximal ideal \mathfrak{m} of R containing (d). As above the natural map $R \rightarrow R / \mathfrak{m}$ lifts to a homomorphism $\varphi: R[X] \rightarrow(R / \mathfrak{m})[X]$. Since
R is a Bézout domain, (d) is the ideal generated by the coefficients of $f g$. This means every coefficient of $f g$ lies in \mathfrak{m}. That is, $\varphi(f g)=0$. But $\varphi(f g)=\varphi(f) \varphi(g)$ and R / \mathfrak{m} is a field, so (WLOG) $\varphi(f)=0$. This means that every coefficient of f lies in \mathfrak{m}. Hence so that $c(f) \neq R^{\times}$.

Although the proof of Theorem 5 seems general enough to handle the GCD case, it is in the last step that it breaks down. In general, even if the elements in a GCD are contained in a maximal ideal, the GCD itself need not be. For example, $(2, X)$ is maximal in $\mathbb{Z}[X]$ but the GCD of its generators is $\{ \pm 1\}$.

