

Modern Algebra II Fall 2019

## Assignment 1.1 Due September 4

**Exercise 1.** A ring R such that  $a^2 = a$  for all  $a \in R$  is called *Boolean*. Prove that every Boolean ring R is commutative and that 2a = 0 for all  $a \in R$ .

**Exercise 2.** Let R be a ring, S a set, and

$$R^S = \{f : S \to R\},\$$

the set of all functions from S to R. Prove that  $R^S$  is a ring under point-wise operations.

**Exercise 3.** If  $A = \mathbb{Z} \oplus \mathbb{Z}$ , prove that End A is not commutative. Can you identify End A?

**Exercise 4.** Given a ring R, let

$$Z(R) = \{ a \in R \mid ab = ba \text{ for all } b \in R \}.$$

Prove that Z(R) is a subring of R, called the *center* of R.

**Exercise 5.** Let  $\alpha \in \mathbb{C}$ . Prove that if  $\alpha$  is a root of a monic quadratic polynomial with integer coefficients, then

$$\mathbb{Z}\left[\alpha\right] = \left\{a + b\alpha \,|\, a, b \in \mathbb{Z}\right\}$$

is a subring of  $\mathbb{C}$ .