

Modern Algebra II Fall 2019

Assignment 1.2 Due September 4

Exercise 1. Let $p \in \mathbb{N}$ be a prime and let $\mathbb{Z}_{(p)}$ denote the set of all rational numbers with denominators *not* divisible by p.

- **a.** Show that $\mathbb{Z}_{(p)}$ is a subring of \mathbb{Q} .
- **b.** Determine $\mathbb{Z}_{(p)}^{\times}$.

Exercise 2. Let \mathbb{H} be the set of all 2×2 matrices over \mathbb{C} of the form

$$\begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix},$$

where the bar denotes complex conjugation. Prove that $\mathbb H$ is a noncommutative division ring.^1

Exercise 3. Let R be a ring and $a, b, c \in R$. Prove the following *left cancellation law*: if $a \neq 0$ and a is not a zero divisor, then ab = ac implies b = c.

Exercise 4. Prove that if F is a field, then every nonzero element of $M_n(F)$ is either a unit or a zero divisor. Show that this is no longer true if F is replaced with \mathbb{Z} .

¹A division ring (or skew field) is a ring (not necessarily commutative) in which every nonzero element is a unit.