Exercise 1. Let K / F be fields and suppose $S, T \subset K$. Prove that $F(S)(T)=F(S \cup T)$.

Exercise 2. Let K / F be fields. Suppose that $\alpha \in K$ is one root of an irreducible quadratic polynomial $f(X) \in F[X]$. Prove that $F(\alpha)=\{a+b \alpha \mid a, b \in F\}$.

Exercise 3. Let $p, q \in \mathbb{Z}$ be distinct prime numbers.
a. Prove that $X^{2}-q$ is irreducible over $\mathbb{Q}(\sqrt{p})=\{a+b \sqrt{p} \mid a, b \in \mathbb{Q}\}$.
b. Use part a and Exercise 2 to conclude that

$$
\mathbb{Q}(\sqrt{p}, \sqrt{q})=\{a+b \sqrt{p}+c \sqrt{q}+d \sqrt{p q} \mid a, b, c, d \in \mathbb{Q}\} .
$$

c. Show that $\mathbb{Q}(\sqrt{p}, \sqrt{q})=\mathbb{Q}(\sqrt{p}+\sqrt{q})$.

Exercise 4. Let F be a field. The quotient field of the polynomial ring $F[X]$ is denoted $F(X)$ and is called the field of rational functions in X. Let $n \in \mathbb{N}$ consider the polynomial $f(X, T)=T^{n}-X \in F[X, T]$.
a. Show that f is irreducible as a polynomial in X over the field $F(T)$ of rational functions in T.
b. Use (a corollary to) Gauss' lemma to conclude that f is irreducible in $F[X, T]$.
c. Use similar reasoning to conclude that f is irreducible as a polynomial in T over the field $F(X)$.
d. Conclude that for $n \geq 2, X^{1 / n}$ is "irrational," i.e. $X^{1 / n} \notin F(X)$.

Exercise 5. Let $p \in \mathbb{Z}$ be a prime number and let $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ be the field with p elements. Show that the extension $\mathbb{F}_{p}\left(X^{1 / p}\right)$ of $\mathbb{F}_{p}(X)$ contains every root of $T^{p}-X \in \mathbb{F}_{p}(X)[T]$.

