

Modern Algebra II Fall 2019 Assignment 10.2 Due November 20

Exercise 1. Let F be a field.

- **a.** If $a \in F$ and $a \neq \Box$, show that $X^2 a \in F[X]$ is irreducible.
- **b.** Let $a \in F$ with $a \neq \Box$, and let \sqrt{a} denote a fixed root of $X^2 a$ in some extension K/F. Prove that

$$k = \left\{ x + y\sqrt{a} \, \middle| \, x, y \in F \right\}$$

is a subfield of K. Conclude that $k = F(\sqrt{a})$.

c. Let $a, b \in F$ with $a, b \neq \Box$. Let K/F be an extension containing both \sqrt{a} and \sqrt{b} . Prove that $F(\sqrt{a}) = F(\sqrt{b})$ if and only if there is a $c \in F^{\times}$ so that $a = bc^2$.

Exercise 2. Let F be a field and let $f_1, \ldots, f_n \in F[X]$. Prove that a field K/F is a splitting field over F for the set $\{f_1, f_2, \ldots, f_n\}$ if and only if K is a splitting field over F for the single polynomial $f_1 f_2 \cdots f_n$.

Exercise 3. Lek K/k/F be fields and let $f \in F[X]$. Prove that if K is a splitting field of f over F, then K is a splitting field of f over k.