Modern Algebra II
Assignment 10.2
FALL 2019
Due November 20

Exercise 1. Let F be a field.
a. If $a \in F$ and $a \neq \square$, show that $X^{2}-a \in F[X]$ is irreducible.
b. Let $a \in F$ with $a \neq \square$, and let \sqrt{a} denote a fixed root of $X^{2}-a$ in some extension K / F. Prove that

$$
k=\{x+y \sqrt{a} \mid x, y \in F\}
$$

is a subfield of K. Conclude that $k=F(\sqrt{a})$.
c. Let $a, b \in F$ with $a, b \neq \square$. Let K / F be an extension containing both \sqrt{a} and \sqrt{b}. Prove that $F(\sqrt{a})=F(\sqrt{b})$ if and only if there is a $c \in F^{\times}$so that $a=b c^{2}$.

Exercise 2. Let F be a field and let $f_{1}, \ldots, f_{n} \in F[X]$. Prove that a field K / F is a splitting field over F for the set $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ if and only if K is a splitting field over F for the single polynomial $f_{1} f_{2} \cdots f_{n}$.

Exercise 3. Lek $K / k / F$ be fields and let $f \in F[X]$. Prove that if K is a splitting field of f over F, then K is a splitting field of f over k.

