Exercise 1. Let K / F be fields and suppose $\alpha \in K$ is algebraic over F with minimal polynomial $p \in F[X]$. If $q \in F[X]$ is monic, irreducible and satisfies $q(\alpha)=0$, show that $p=q$.

Exercise 2. Let F be a field and let $f, g \in F[X]$ be nonzero. Suppose that K is an extension of F and there is an $\alpha \in K$ so that $f(\alpha)=g(\alpha)=0$. Prove that f and g have a nontrivial common factor in $F[X] .{ }^{1}$ Conclude that two polynomials over F have a nontrivial common factor over F if and only if they share a root in an extension of F.

Exercise 3. Let α be a root of $X^{3}+X^{2}+1$ in some extension of $\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}$. What is the degree of the minimal polynomial of α over \mathbb{F}_{2} ?

Exercise 4. Lang, Exercise VII.1.23.

[^0]
[^0]: ${ }^{1}$ The polynomial $X-\alpha$ doesn't count as a common factor: it divides both f and g, but not necessarily over F.

