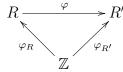


Modern Algebra II Fall 2019 Assignment 2.2 Due September 11

Exercise 1. Let R be a ring and let $\varphi_R : \mathbb{Z} \to R$ denote the map $n \mapsto n \cdot 1_R$.

- **a.** Prove that φ_R is the *only* homomorphism from \mathbb{Z} to R.
- **b.** Let $\varphi : R \to R'$ be a homomorphism of rings. Prove that the following diagram commutes:



Exercise 2. Let R be a commutative ring with prime characteristic p. Prove that for all $a, b \in R$ and all $n \in \mathbb{N}$ one has $(a+b)^{p^n} = a^{p^n} + b^{p^n}$.

Exercise 3. An element a in a ring R is called *nilpotent* if there is an $n \in \mathbb{N}$ so that $a^n = 0$.

- **a.** Give an example of a ring with nonzero nilpotents.
- **b.** If $a, b \in R$ are nilpotent and ab = ba, prove that a + b is nilpotent.

Exercise 4. Let R be a ring. Prove that if $a \in R$ is nilpotent, then $1 \pm a \in R^{\times}$.