

**Exercise 1.** Let  $\varphi : R \to R'$  be a homomorphism of rings.

- **a.** If J is an ideal in R', prove that  $\varphi^{-1}(J)$  is an ideal in R.
- **b.** If I is an ideal in R and  $\varphi$  is surjective, prove that  $\varphi(I)$  is an ideal in R'.

**Exercise 2.** A collection C of ideals in a ring R is called a *chain* if for all  $I, J \in C$ , either  $I \subset J$  or  $J \subset I$ . Let C be a chain of ideals in R.

- **a.** Prove that  $J = \bigcup_{I \in \mathcal{C}} I$  is an ideal in R.
- **b.** If every ideal in C is proper, prove that J is, too.

**Exercise 3.** Let F be a field. A surjective homomorphism  $\nu : (F^{\times}, \cdot) \to (\mathbb{Z}, +)$  is called a *discrete valuation* if  $\nu(a+b) \geq \min\{\nu(a), \nu(b)\}$  for all  $a, b \in F^{\times}$  (with  $a \neq -b$ ). Note that if we set  $\nu(0) = \infty$ , then the multiplicative and additive properties of  $\nu$  extend to all of F.

- **a.** Prove that  $R = \{a \in F \mid \nu(a) \ge 0\}$  is a subring of F, the valuation ring.
- **b.** Show that  $R^{\times} = \ker \nu$ .
- **c.** Show that for every  $n \in \mathbb{N}$ ,  $I_n = \{a \in F \mid \nu(a) \geq n\}$  is a proper ideal of R.  $I_1$  is called the *valuation ideal*.

**Exercise 4.** Let F be a field with discrete valuation  $\nu$ , valuation ring R, and ideals  $I_n$  as in the previous exercise. A *uniformizer* of R is an element  $\pi \in F$  with  $\nu(\pi) = 1$ .

- **a.** Let  $\pi$  be a uniformizer of R. Prove that  $I_n = \pi^n R$ .
- **b.** Prove that  $\{0\} \subsetneq \cdots \subsetneq I_3 \subsetneqq I_2 \gneqq I_1 \gneqq R$ .
- **c.** Show that  $\bigcap_{n \in \mathbb{N}} I_n = \{0\}.$

**d.** Let  $A \subset R$  be a nonzero proper ideal. Show that there is an  $n \in \mathbb{N}$  so that  $A = I_n$ .