

Modern Algebra II Fall 2019 Assignment 4.1 Due October 2

Exercise 1. Let $\varphi : R \to R_1$ and $\psi : R \to R_2$ be homomorphisms of rings.

- **a.** Check that the product map $\varphi \times \psi : R \to R_1 \times R_2$ is a ring homomorphism.
- **b.** Prove that $\varphi \times \psi : R \to R_1 \times R_2$ is a surjection if and only if (i) φ and ψ are surjections and (ii) $(1_{R_1}, 0), (0, 1_{R_2}) \in \operatorname{im} \varphi \times \psi$.

Exercise 2. Let R be a ring and \mathcal{I} a collection of ideals in R. We say that the ideals in \mathcal{I} are *pairwise coprime* if A + B = R for all distinct $A, B \in \mathcal{I}$.

- **a.** Prove that if A_1, A_2, \ldots, A_m are pairwise coprime ideals in a commutative ring R, then $A_1A_2 \cdots A_{m-1} + A_m = R$.
- **b.** Prove that if A_1, A_2, \ldots, A_n are pairwise coprime ideals in a commutative ring R, then

 $A_1 \cap A_2 \cap \dots \cap A_n = A_1 A_2 \cdots A_n.$

Exercise 3. Let A, B be a ideals in a ring R. Suppose that $A \subset B$ and let

 $C = \{ r \in R \mid br \in A \text{ for all } b \in B \}.$

Prove that C is an ideal in R containing A, and that

 $BC \subset A \subset B \cap C.$

Exercise 4. Let R_1 and R_2 be rings. For k = 1, 2, let $\pi_k : R_1 \times R_2 \to R_k$ denote projection onto the kth coordinate.

- **a.** Prove that π_k is a ring homomorphism for k = 1, 2.
- **b.** Let $I \subset R_1 \times R_2$. Prove that I is an ideal in $R_1 \times R_2$ if and only if $I = A_1 \times A_2$ for some ideals $A_k \subset R_k$, k = 1, 2. [Suggestion: Apply exercise 3.2.1 to the projection maps.]
- **c.** Prove that $(R_1 \times R_2)^{\times} = R_1^{\times} \times R_2^{\times}$.