

Modern Algebra II Fall 2019 Assignment 4.2 Due October 2

Exercise 1. Prove that a commutative ring R is a domain if and only if (0) is a prime ideal.

Exercise 2. A commutative ring R is called *local* if it has a unique maximal ideal. Prove that a commutative ring R is a local ring with maximal ideal M if and only if $M = R \setminus R^{\times}$.

Exercise 3. The spectrum Spec R of a commutative ring R is defined to be the set of all prime ideals in R. Given an ideal $A \subset R$, the *ideal variety* in Spec R associated to A is

$$V(A) = \{ P \in \operatorname{Spec} R \, | \, A \subset P \}.$$

Let $B \subset R$ be an ideal.

- **a.** Prove that $A \subset B$ implies $V(B) \subset V(A)$.
- **b.** Prove that $V(A + B) = V(A) \cap V(B)$.
- **c.** Prove that $V(AB) = V(A) \cup V(B)$.

Remark. Part **b** can be generalized as follows. If \mathcal{I} is any collection of ideals, and we define the sum of the ideals in \mathcal{I} by

$$\sum_{A \in \mathcal{I}} A = \left(\bigcup_{A \in \mathcal{I}} A\right),$$

we leave it as an additional exercise to show that $V(\sum_{A \in \mathcal{I}} A) = \bigcap_{A \in \mathcal{I}} V(A)$. Together with part **c** this proves that the ideal varieties V(I) are the closed sets of a topology on Spec R, known as the *Zariski topology*. In modern algebraic geometry, the space Spec R equipped with the Zariski topology (and some additional algebraic information) is called an *affine* scheme.

Exercise 4. Let I be an interval of real numbers and $R = C^0(I)$ be the set of all continuous real-valued functions on I. Note that R is a subring of \mathbb{R}^I by standard results from calculus. Prove that for each $a \in I$, the set

$$M_a = \{ f \in R \, | \, f(a) = 0 \}$$

is a maximal ideal in R. Are these the only maximal ideals in R?