

Modern Algebra II Fall 2019 Assignment 4.3 Due October 2

Exercise 1. Let R be a ring and P_1, P_2 prime ideals in R, neither containing the other. Explain why $P_1 \cap P_2$ need not be prime. Provide an example in which this is the case.

Exercise 2. An ideal A in a ring R is called *radical* if for all $a \in R$ and $n \in \mathbb{N}$, $a^n \in A$ implies $a \in A$. Note that every prime ideal is necessarily radical.

- **a.** Classify the radical ideals in \mathbb{Z} . Use your classification to give an example of a non-prime radical ideal. This shows that being prime is stronger than being radical.
- **b.** Prove that A is radical if and only if $\sqrt{A} = A$. Conclude that, when R is commutative, \sqrt{A} is a radical ideal. See Exercise 3.1.2.
- **c.** Let \mathcal{P} be a collection of prime ideals in R. Prove that when R is commutative, $\bigcap_{P \in \mathcal{P}} P$ is a radical ideal.

Exercise 3. Prove that if $M_1 \neq M_2$ are distinct maximal ideals in a ring R, then $M_1 + M_2 = R$. Conclude that if R is commutative, then $R/M_1M_2 \cong R/M_1 \times R/M_2$.

Exercise 4. Let $E_i : \mathbb{Z}[X] \to \mathbb{C}$ denote the evaluation at $i = \sqrt{-1}$ homomorphism. Use E_i to show that $\mathbb{Z}[X]/(X^2+1) \cong \mathbb{Z}[i]$. Conclude that the ideal (X^2+1) is prime in $\mathbb{Z}[X]$, but not maximal.

Exercise 5. If p is a prime number with $p \equiv 1 \pmod{4}$, the theory of quadratic residues implies that there is an $n \in \mathbb{Z}$ so that $n^2 \equiv -1 \pmod{p}$. Choose such an n.

a. Prove that in $\mathbb{Z}[X]$ we have $(X^2 + 1, p) = (X^2 - n^2, p) = \underbrace{(X - n, p)(X + n, p)}_A$. Deduce

that $(X^2 + 1, p)$ is a radical ideal. See Exercises 2c and 3.

b. Use the Chisese remainder theorem to conclude that

$$\mathbb{Z}[X]/(X^2+1,p) \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z},$$

and use this to determine whether $(X^2 + 1, p)$ is prime, maximal or neither.

Remarks.

- 1. Exercises 1 and 2 tell us that although intersections of prime ideals aren't necessarily prime, they do still have the (weaker) property of being radical. Radical ideals figure prominently in classical algebraic geometry.
- 2. In Exercise 2, the radical \sqrt{A} is defined as a set whether or not R is commutative. Commutativity is needed in part **b** only to guarantee that \sqrt{A} is actually an *ideal* (recall that proving this requires the binomial theorem).
- 3. The use of the commutativity hypothesis is equally subtle in part **c** of Exercise 2. Let's say that an ideal P satisfying $ab \in P \Rightarrow a \in P$ or $b \in P$ is *EW-prime* (EW is for *element-wise*). To prove the intersection in part **c** is radical, you'll want to take advantage of EW-primality. But prime ideals are guaranteed to be EW-prime only if we assume R is commutative. In other words, R needs to be commutative just so that EW-prime is equivalent to prime.
- 4. Because every proper ideal A in a ring R is contained in a maximal ideal, the collection $Z(A) = \{P \subset R \mid P \text{ is prime and } A \subset P\}$ is nonempty. Therefore, when R is commutative, the ideal $\bigcap_{P \in Z(A)} P$ in Exercise 2c is a radical ideal containing A. We will prove that, in fact, this intersection is precisely \sqrt{A} .
- 5. Exercise 3 generalizes to any finite collection of maximal ideals in R.
- 6. To show that $p \in A$ in Exercise 5, first show that $2np \in A$. Then apply Bézout's lemma to 2n and p, and multiply the result by p.
- 7. For any p, the ideal $(X^2 + 1, p)$ in $\mathbb{Z}[X]$ is the kernel of the composite map

$$\mathbb{Z}[X] \to (\mathbb{Z}/p\mathbb{Z})[X] \to (\mathbb{Z}/p\mathbb{Z})[X]/(X^2+1).$$

This can be used to recover the results of Exercise 5, and to show that, when $p \equiv -1 \pmod{4}$, $(X^2 + 1, p)$ is a maximal ideal whose quotient ring is a field with p^2 elements. The prime p = 2 can also be handled this way, but the results appear somewhat mysterious: $(X^2 + 1, 2) = (X + 1, 2)^2$ with quotient ring isomorphic to the subring

$$\left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \middle| a, b \in \mathbb{Z}/2\mathbb{Z} \right\}$$

of $M_2(\mathbb{Z}/2\mathbb{Z})$. However, the details of this argument require a more thorough discussion of polynomial rings.