
Modern Algebra II Assignment 4.3
Fall 2019 Due October 2

Exercise 1. Let R be a ring and P1, P2 prime ideals in R, neither containing the other.
Explain why P1 ∩ P2 need not be prime. Provide an example in which this is the case.

Exercise 2. An ideal A in a ring R is called radical if for all a ∈ R and n ∈ N, an ∈ A
implies a ∈ A. Note that every prime ideal is necessarily radical.

a. Classify the radical ideals in Z. Use your classification to give an example of a non-prime
radical ideal. This shows that being prime is stronger than being radical.

b. Prove that A is radical if and only if
√
A = A. Conclude that, when R is commutative,√

A is a radical ideal. See Exercise 3.1.2.

c. Let P be a collection of prime ideals in R. Prove that when R is commutative,
⋂

P∈P P
is a radical ideal.

Exercise 3. Prove that if M1 6= M2 are distinct maximal ideals in a ring R, then M1+M2 =
R. Conclude that if R is commutative, then R/M1M2

∼= R/M1 ×R/M2.

Exercise 4. Let Ei : Z[X]→ C denote the evaluation at i =
√
−1 homomorphism. Use Ei

to show that Z[X]/(X2 + 1) ∼= Z[i]. Conclude that the ideal (X2 + 1) is prime in Z[X], but
not maximal.

Exercise 5. If p is a prime number with p ≡ 1(mod 4), the theory of quadratic residues
implies that there is an n ∈ Z so that n2 ≡ −1 (mod p). Choose such an n.

a. Prove that in Z[X] we have (X2 + 1, p) = (X2 − n2, p) = (X − n, p)(X + n, p)︸ ︷︷ ︸
A

. Deduce

that (X2 + 1, p) is a radical ideal. See Exercises 2c and 3.

b. Use the Chisese remainder theorem to conclude that

Z[X]/(X2 + 1, p) ∼= Z/pZ× Z/pZ,

and use this to determine whether (X2 + 1, p) is prime, maximal or neither.



Remarks.

1. Exercises 1 and 2 tell us that although intersections of prime ideals aren’t necessarily
prime, they do still have the (weaker) property of being radical. Radical ideals figure
prominently in classical algebraic geometry.

2. In Exercise 2, the radical
√
A is defined as a set whether or not R is commutative.

Commutativity is needed in part b only to guarantee that
√
A is actually an ideal

(recall that proving this requires the binomial theorem).

3. The use of the commutativity hypothesis is equally subtle in part c of Exercise 2. Let’s
say that an ideal P satisfying ab ∈ P ⇒ a ∈ P or b ∈ P is EW-prime (EW is
for element-wise). To prove the intersection in part c is radical, you’ll want to take
advantage of EW-primality. But prime ideals are guaranteed to be EW-prime only if
we assume R is commutative. In other words, R needs to be commutative just so that
EW-prime is equivalent to prime.

4. Because every proper ideal A in a ring R is contained in a maximal ideal, the collection
Z(A) = {P ⊂ R |P is prime and A ⊂ P} is nonempty. Therefore, when R is commu-
tative, the ideal

⋂
P∈Z(A) P in Exercise 2c is a radical ideal containing A. We will prove

that, in fact, this intersection is precisely
√
A.

5. Exercise 3 generalizes to any finite collection of maximal ideals in R.

6. To show that p ∈ A in Exercise 5, first show that 2np ∈ A. Then apply Bézout’s lemma
to 2n and p, and multiply the result by p.

7. For any p, the ideal (X2 + 1, p) in Z[X] is the kernel of the composite map

Z[X]→ (Z/pZ)[X]→ (Z/pZ)[X]/(X2 + 1).

This can be used to recover the results of Exercise 5, and to show that, when p ≡ −1
(mod 4), (X2 + 1, p) is a maximal ideal whose quotient ring is a field with p2 elements.
The prime p = 2 can also be handled this way, but the results appear somewhat
mysterious: (X2 + 1, 2) = (X + 1, 2)2 with quotient ring isomorphic to the subring{(

a b
0 a

) ∣∣∣∣ a, b ∈ Z/2Z
}

of M2(Z/2Z). However, the details of this argument require a more thorough discussion
of polynomial rings.


