Exercise 1. Let R be a commutative ring and let $A, B, C \subset R$ be ideals.
a. If $A+B=R$, prove that $A^{m}+B^{n}=R$ for all $m, n \in \mathbb{N}$. [Suggestion: This follows easily from Exercise 3.3.3, but can also be proven directly.]
b. If A and B are coprime and $A B=C^{n}$ for some $n \in \mathbb{N}$, prove that there are coprime ideals A_{0} and B_{0} so that $A=A_{0}^{n}, B=B_{0}^{n}$ and $A_{0} B_{0}=C$. [Suggestion: Take $A_{0}=A+C$ and $B_{0}=B+C$.]

Exercise 2. Let R be a PID, $a, b, c \in R$ and $n \in \mathbb{N}$. If a and b are coprime ${ }^{1}$ and $a b=c^{n}$, prove that there exist coprime $a_{0}, b_{0} \in R$ and $u, v, w \in R^{\times}$so that $a=u a_{0}^{n}, b=v b_{0}^{n}$ and $a_{0} b_{0}=w c$.

Exercise 3. Let $a, b \in \mathbb{Z}$. Prove that if b is even and $\operatorname{gcd}(a, b)=1$, then $(a+b i, a-b i)=\mathbb{Z}[i]$.

Exercise 4. A Pythagorean triple is a 3-tuple $(a, b, c) \in \mathbb{Z}^{3}$ so that $a^{2}+b^{2}=c^{2}$. A Pythagorean triple is called primitive if $\operatorname{gcd}(a, b, c)=1$.
a. If (a, b, c) is a primitive Pythagorean triple, prove that a and b have opposite parity. [Suggestion: Work modulo 4 and argue by contradiction.]
b. Show that if (a, b, c) is a primitive Pythagorean triple and b is even, then there exist $m, n \in \mathbb{Z}$ so that $\operatorname{gcd}(m, n)=1$ and

$$
\begin{aligned}
a & =m^{2}-n^{2}, \\
b & =2 m n, \\
c & = \pm\left(m^{2}+n^{2}\right) .
\end{aligned}
$$

c. Prove that m and n in part \mathbf{b} must have opposite parity. Conclude that the even member of a primitive pythagorean triple is always divisible by 4 .

[^0]
[^0]: ${ }^{1}$ We say $a, b \in R$ are coprime provided (a) and (b) are coprime ideals.

