

Modern Algebra II Fall 2019 Assignment 6.2 Due October 23

Exercise 1. Let R be a commutative ring and let $A, B, C \subset R$ be ideals.

- **a.** If A + B = R, prove that $A^m + B^n = R$ for all $m, n \in \mathbb{N}$. [Suggestion: This follows easily from Exercise 3.3.3, but can also be proven directly.]
- **b.** If A and B are coprime and $AB = C^n$ for some $n \in \mathbb{N}$, prove that there are coprime ideals A_0 and B_0 so that $A = A_0^n$, $B = B_0^n$ and $A_0B_0 = C$. [Suggestion: Take $A_0 = A + C$ and $B_0 = B + C$.]

Exercise 2. Let R be a PID, $a, b, c \in R$ and $n \in \mathbb{N}$. If a and b are coprime¹ and $ab = c^n$, prove that there exist coprime $a_0, b_0 \in R$ and $u, v, w \in R^{\times}$ so that $a = ua_0^n$, $b = vb_0^n$ and $a_0b_0 = wc$.

Exercise 3. Let $a, b \in \mathbb{Z}$. Prove that if b is even and gcd(a, b) = 1, then $(a+bi, a-bi) = \mathbb{Z}[i]$.

Exercise 4. A Pythagorean triple is a 3-tuple $(a, b, c) \in \mathbb{Z}^3$ so that $a^2 + b^2 = c^2$. A Pythagorean triple is called *primitive* if gcd(a, b, c) = 1.

- **a.** If (a, b, c) is a primitive Pythagorean triple, prove that a and b have opposite parity. [Suggestion: Work modulo 4 and argue by contradiction.]
- **b.** Show that if (a, b, c) is a primitive Pythagorean triple and b is even, then there exist $m, n \in \mathbb{Z}$ so that gcd(m, n) = 1 and

$$a = m^{2} - n^{2},$$

$$b = 2mn,$$

$$c = \pm (m^{2} + n^{2}).$$

c. Prove that m and n in part **b** must have opposite parity. Conclude that the even member of a primitive pythagorean triple is always divisible by 4.

¹We say $a, b \in R$ are coprime provided (a) and (b) are coprime ideals.