

Modern Algebra II Fall 2019 Assignment 6.3 Due October 23

Exercise 1. Suppose $\alpha \in \mathbb{C}$ is a nonreal root of $X^2 + pX + q \in \mathbb{Z}[X]$, so that $\Delta = p^2 - 4q < 0$. In class we showed that for $z = a + b\alpha \in \mathbb{Z}[\alpha]$, one has $N(z) = |z|^2 = a^2 - pab + qb^2 \in \mathbb{N}_0$.

- **a.** By considering Δ modulo 4, show that $\Delta \leq -3$.
- **b.** When $\Delta = -3$, show that $\mathbb{Z}[\alpha] = \mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$. When $\Delta = -4$, show that $\mathbb{Z}[\alpha] = \mathbb{Z}[i]$. The unit groups of these quadratic orders were computed in Assignment 6.1.
- **c.** Show that $z \in \mathbb{Z}[\alpha]^{\times}$ if and only if N(z) = 1.
- **d.** Show that $N(a + b\alpha) = 1$ if and only if $(2a bp)^2 + |\Delta|b^2 = 4$.
- **e.** When $\Delta \leq -5$, show that $\mathbb{Z}[\alpha]^{\times} = \{\pm 1\}$.

So, with only two exceptions, the unit group in $\mathbb{Z}[\alpha]$ contains only ± 1 .

Exercise 2. Let $\mathbb{Z}[\alpha]$ and $N(\cdot)$ be as above. Show that for any $z \in \mathbb{Z}[\alpha]$, if N(z) is a prime integer, then z is irreducible.

Exercise 3. Use the norm and Exercise 1 to prove that 3 and $2 \pm \sqrt{-5}$ are nonassociate irreducibles in $\mathbb{Z}[\sqrt{-5}]$.

Exercise 4. Let D be a domain. Prove that if $a_0 \in D$ is irreducible, then $f = \sum_{i\geq 0} a_i X^i \in D[[X]]$ is irreducible. Show that this statement is false if D[[X]] is replaced by D[X].