

Modern Algebra II Fall 2019

Assignment 7.1 Due October 30

Exercise 1.

- **a.** Show that X + 1 is a unit in $\mathbb{Z}[[X]]$, but is not a unit in $\mathbb{Z}[X]$.
- **b.** Show that $X^2 + 3X + 2$ is irreducible in $\mathbb{Z}[[X]]$, but is not irreducible in $\mathbb{Z}[X]$.

Exercise 2. Let R be a commutative ring and $S \subset R$ a proper multiplicative subset.

- **a.** Prove that for all $s \in S$ and $a \in R$, if sa = 0, then a = 0.
- **b.** Show that for all $\frac{a}{s}, \frac{b}{t} \in S^{-1}R$ one has $\frac{a}{s} = \frac{b}{t}$ if and only if at bs = 0.

Exercise 3. Let S be a multiplicative set in a commutative ring R. Suppose $s \in S$, $a \in R$ and $a \neq 0$. Prove that if as = 0, then $\frac{a}{1} = \frac{0}{1}$. Conclude that if $0 \in S$, then $S^{-1}R = \left\{\frac{0}{1}\right\}$.

Exercise 4. If $S \subset \mathbb{Z}$ is a proper multiplicative set, then we can view $S^{-1}\mathbb{Z}$ as a subset of \mathbb{Q} .

- **a.** Show that if S is the set of even integers, then $S^{-1}\mathbb{Z} = \mathbb{Q}$.
- **b.** State and prove a condition on (a general) S that guarantees $S^{-1}\mathbb{Z} = \mathbb{Q}$.