On the Complex Matrix Representation of the Quaternions

R. C. Daileda

1 Introduction

Although it can be constructed rigorously in a number of ways, the division ring \mathbb{H} of Hamiltonian quaternions is classically defined to be the set of all formal linear combinations of the form

$$
\alpha=a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}
$$

where $a, b, c, d \in \mathbb{R}$. Elements of \mathbb{H} are added coordinate-wise, and multiplied formally, allowing scalars to commute with other elements, using the relationships

$$
\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i j} \mathbf{k}=-1
$$

The center of \mathbb{H} is the set of real quaternions, those quaternions which satisfy $b=c=d=0$, and it is clearly isomorphic to \mathbb{R}. The quaternions of the form $a+b \mathbf{i}$ (i.e. $c=d=0$) also form a subring of \mathbb{H}, this time isomorphic to $\mathbb{C} .{ }^{1}$

Note that the real quaternions embed into the "complex quaternions" in the usual way, namely as those elements with $b=0$. It follows that we can view both \mathbb{R} and \mathbb{C} as subrings of \mathbb{H}, with the usual inclusion $\mathbb{R} \subset \mathbb{C}$. While \mathbb{R} is central in \mathbb{H}, \mathbb{C} is not. However, because the units $\mathbf{i}, \mathbf{j}, \mathbf{k}$ anti-commute, for $z=a+b \mathbf{i} \in \mathbb{C}$ we have the commutation relations

$$
\begin{align*}
z \mathbf{j} & =a \mathbf{j}+b \mathbf{k} \tag{1}
\end{align*}=\mathbf{j}(a-b \mathbf{i})=\mathbf{j} \bar{z}, ~ 子 a \mathbf{k}=\mathbf{k}(a-b \mathbf{i})=\mathbf{k} \bar{z} .
$$

The goal of this note is to explicitly realize \mathbb{H} as a ring of 2×2 matrices over \mathbb{C}. More specifically, we will prove that

$$
\mathbb{H} \cong\left\{\left.\left(\begin{array}{cc}
z & w \\
-\bar{w} & \bar{z}
\end{array}\right) \right\rvert\, z, w \in \mathbb{C}\right\}
$$

The conjugations on the right-hand side are a result of the commutation relations (1). Without them the ring on the right would be commutative and contain zero divisors.

2 The Regular Representation

Let R be a ring containing a field F in its center. For example, $R=\mathrm{M}_{n}(F)$ with F any field, embedded as the scalar matrices $\alpha I, \alpha \in F$. Left multiplication by F turns R into an F-vector space, and it isn't hard to show that $\operatorname{End}_{F}(R)$, the set of F-linear endomorphisms of R, is a subring of the full endomorphism ring End $R .{ }^{2}$ There is a natural way to embed R into $\operatorname{End}_{F}(R)$ by viewing left multiplication in R as an F-linear operation. That is, for each $a \in R$, define $\lambda_{a}: R \rightarrow R$ by $\lambda_{a}(x)=a x$. For any $x, y \in R$ and $\alpha \in F$ we then have

$$
\lambda_{a}(x+y)=a(x+y)=a x+a y=\lambda_{a}(x)+\lambda_{a}(y)
$$

[^0]and since F is central in R, for any $\alpha \in F$,
$$
\lambda_{a}(\alpha x)=a(\alpha x)=(a \alpha) x=(\alpha a) x=\alpha(a x)=\alpha \lambda_{a}(x)
$$

That is, $\lambda_{a} \in \operatorname{End}_{F}(R)$. Since $\lambda_{a+b}=\lambda_{a}+\lambda_{b}, \lambda_{a b}=\lambda_{a} \circ \lambda_{b}$ and $\lambda_{1_{R}}=\mathrm{id}$ (easy exercises), we find that the map

$$
\begin{aligned}
\rho: R & \rightarrow \operatorname{End}_{F}(R) \\
a & \mapsto \lambda_{a}
\end{aligned}
$$

is a homomorphism of rings. From $\lambda_{a}\left(1_{R}\right)=a 1_{R}=a$ it follows that $\lambda_{a} \equiv 0$ if and only if $a=0$. Hence the kernel of ρ is trivial, and we conclude that ρ is an embedding. ρ is called the left regular representation of R.

When $n=\operatorname{dim}_{F} R$ is finite, we can make ρ a bit more concrete. Given an F-basis \mathcal{B} for R, it is well-known that the coordinate map

$$
\begin{aligned}
{[\cdot]_{\mathcal{B}}: \operatorname{End}_{F}(R) } & \rightarrow \mathrm{M}_{n}(F) \\
T & \longmapsto[T]_{\mathcal{B}}
\end{aligned}
$$

where $[T]_{\mathcal{B}}$ denotes the matrix of T relative to \mathcal{B}, is an isomorphism. It follows that the composite map, $\rho_{\mathcal{B}}(a)=\left[\lambda_{a}\right]_{\mathcal{B}}$, is an embedding of R into the matrix ring $\mathrm{M}_{n}(F)$. When the field F is familiar, this can be a convenient way to realize more abstract rings that contain F centrally.

When F is not central in R, the construction of the left regular representation fails: λ_{a} may not preserve scalar multiplication. The problem is that F and R are both acting on the left. The easiest way out of this situation is to simply let R act on the right instead. For $a, x \in R$, define $\mu_{a}(x)=x a$. As above, μ_{a} is additive, and for $\alpha \in F$ we have

$$
\mu_{a}(\alpha x)=(\alpha x) a=\alpha(x a)=\alpha \mu_{a}(x)
$$

so that μ_{a} does preserve scalar multiplication of R by F. Thus $\mu_{a} \in \operatorname{End}_{F}(R)$. However, as one can easily check, for $a, b \in R$ we have $\mu_{a b}=\mu_{b} \circ \mu_{a}$, so that the rule $a \mapsto \mu_{a}$ need not define a homomorphism from R to $\operatorname{End}_{F}(R)$.

When R has finite dimension n over F, we can remedy this situation with the transpose. As above, let \mathcal{B} be an F-basis for R, and consider $\sigma_{\mathcal{B}}: R \rightarrow \operatorname{End}_{F}(R)$ given by $a \mapsto\left[\mu_{a}\right]_{\mathcal{B}}^{t}$. Because the transpose is F-linear and reverses the order of multiplication, we immediately conclude that $\sigma_{\mathcal{B}}$ is a homomorphism. As above, composition with evaluation at 1_{R} proves that $\sigma_{\mathcal{B}}$ is injective. We call $\sigma_{\mathcal{B}}$ the right regular representation of $R .{ }^{3}$

In the case that R is infinite dimensional (e.g. $R=\mathbb{R}$ and $F=\mathbb{Q}$), $\operatorname{End}_{F}(R)$ is no longer isomorphic to a matrix ring, and "correcting" μ becomes a bit more complicated. The transpose of a linear endomorphism can be defined abstractly, but it requires the notion of a dual vector space, and at the end of the day one ends up with an embedding of R into the endomorphism ring of its (vector space) dual, instead of $\operatorname{End}_{F}(R)$.

3 The Quaternions as a Complex Matrix Algebra

As a vector space over \mathbb{R}, the ring \mathbb{H} is four-dimensional, by definition. Therefore, the left regular representation of \mathbb{H} over \mathbb{R} will yield a subring of $\mathrm{M}_{4}(\mathbb{R})$ isomorphic to \mathbb{H}. To compute it, first set $q=a+b \mathbf{i}+c \mathbf{j}+d k$. We then have

$$
\begin{aligned}
\lambda_{q}(1) & =q \cdot 1=q \\
\lambda_{q}(\mathbf{i}) & =q \cdot \mathbf{i}=-b+a \mathbf{i}+d \mathbf{j}-c \mathbf{k} \\
\lambda_{q}(\mathbf{j}) & =q \cdot \mathbf{j}=-c-d \mathbf{i}+a \mathbf{j}+b \mathbf{k} \\
\lambda_{q}(\mathbf{k}) & =q \cdot \mathbf{k}=-d+c \mathbf{i}-b \mathbf{j}+a \mathbf{k}
\end{aligned}
$$

[^1]So with $\mathcal{B}=\{1, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$, we find that

$$
\rho_{\mathcal{B}}(q)=\left[\lambda_{q}\right]_{\mathcal{B}}=\left(\begin{array}{cccc}
a & -b & -c & -d \tag{2}\\
b & a & -d & c \\
c & d & a & -b \\
d & -c & b & a
\end{array}\right)
$$

It follows at once that \mathbb{H} is isomorphic to the ring of all real matrices of the form (2).
Since

$$
a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}=\underbrace{a+b \mathbf{i}}_{z \in \mathbb{C}}+(\underbrace{c+d \mathbf{i}}_{w \in \mathbb{C}}) \mathbf{j}=z+w \mathbf{j},
$$

the set $\mathcal{B}=\{1, \mathbf{j}\}$ is a \mathbb{C}-basis for \mathbb{H}, so that the dimension of \mathbb{H} over \mathbb{C} is 2 . Because \mathbb{C} is not central in \mathbb{H}, only the right regular representation over \mathbb{C} is defined. For $z, w \in \mathbb{C}$ we have

$$
\begin{aligned}
\mu_{z+w \mathbf{j}}(1) & =1(z+w \mathbf{j})=z+w \mathbf{j} \\
\mu_{z+w \mathbf{j}}(\mathbf{j}) & =\mathbf{j}(z+w \mathbf{j})=\bar{z} \mathbf{j}+\bar{w} \mathbf{j}^{2}=-\bar{w}+\bar{z} \mathbf{j}
\end{aligned}
$$

Consequently

$$
\left[\mu_{z+w \mathbf{j}}\right]_{\mathcal{B}}=\left(\begin{array}{cc}
z & -\bar{w} \\
w & \bar{z}
\end{array}\right)
$$

so that

$$
\sigma_{\mathcal{B}}(z+w \mathbf{j})=\left[\mu_{z+w \mathbf{j}}\right]_{\mathcal{B}}^{t}=\left(\begin{array}{cc}
z & w \\
-\bar{w} & \bar{z}
\end{array}\right) .
$$

Hence the image of $\sigma_{\mathcal{B}}$, namely

$$
\mathbf{H}=\left\{\left.\left(\begin{array}{cc}
z & w \\
-\bar{w} & \bar{z}
\end{array}\right) \right\rvert\, z, w \in \mathbb{C}\right\},
$$

is a subring of $\mathrm{M}_{2}(\mathbb{C})$ that is isomorphic to \mathbb{H}, which is precisely what we sought to prove.

[^0]: ${ }^{1}$ It's tempting to call this the subring of complex quaternions, but in the literature the term complex is used to refer to any quaternion having at least one of b, c, d nonzero.
 ${ }^{2}$ Recall that here we are dealing with the endomorphisms of $(R,+)$.

[^1]: ${ }^{3}$ Strictly speaking, using the definite article "the" is inappropriate, because $\sigma_{\mathcal{B}}$ depends on the choice of \mathcal{B}. However, we will overlook this slight abuse of terminology.

