On the Complex Matrix Representation of the Quaternions
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1 Introduction

Although it can be constructed rigorously in a number of ways, the division ring H of Hamiltonian quaternions
is classically defined to be the set of all formal linear combinations of the form

a =a+ bi+ cj+ dk,

where a,b,c,d € R. Elements of H are added coordinate-wise, and multiplied formally, allowing scalars to
commute with other elements, using the relationships

i’ =j=k*>=ijk=-1

The center of H is the set of real quaternions, those quaternions which satisfy b = ¢ = d = 0, and it is clearly
isomorphic to R. The quaternions of the form a + bi (i.e. ¢ = d = 0) also form a subring of H, this time
isomorphic to C.1

Note that the real quaternions embed into the “complex quaternions” in the usual way, namely as those
elements with b = 0. It follows that we can view both R and C as subrings of H, with the usual inclusion
R C C. While R is central in H, C is not. However, because the units i, j, k anti-commute, for z = a+bi € C
we have the commutation relations

zj = aj + bk = j(a — bi) = jz, 1)
zk = ak — bj = k(a — bi) = kz.

The goal of this note is to explicitly realize H as a ring of 2 x 2 matrices over C. More specifically, we

will prove that
H =~ {< ° “’)
—w Z

The conjugations on the right-hand side are a result of the commutation relations (1). Without them the
ring on the right would be commutative and contain zero divisors.

z,we(C}.

2 The Regular Representation

Let R be a ring containing a field F in its center. For example, R = M,,(F) with F any field, embedded as
the scalar matrices al, o € F. Left multiplication by F' turns R into an F-vector space, and it isn’t hard
to show that Endg(R), the set of F-linear endomorphisms of R, is a subring of the full endomorphism ring
End R.2 There is a natural way to embed R into Endr(R) by viewing left multiplication in R as an F-linear
operation. That is, for each a € R, define A\, : R — R by A\,(x) = az. For any 2,y € R and o € F we then
have

Aa(z +y) = alz +y) = az + ay = Xa(z) + Aa(y),

11t’s tempting to call this the subring of complex quaternions, but in the literature the term complez is used to refer to any
quaternion having at least one of b, ¢, d nonzero.
2Recall that here we are dealing with the endomorphisms of (R, +).



and since F' is central in R, for any o € F',
Ao(az) = a(ax) = (aa)z = (ca)z = aaz) = ad,(x).

That is, A\, € Endp(R). Since Agip = Ao + b, Aap = Ag 0 Ap and A\q,, = id (easy exercises), we find that the
map
p: R — Endp(R)
ar— A

is a homomorphism of rings. From \,(1g) = alr = a it follows that A, = 0 if and only if « = 0. Hence the
kernel of p is trivial, and we conclude that p is an embedding. p is called the left regular representation of R.

When n = dimp R is finite, we can make p a bit more concrete. Given an F-basis B for R, it is well-known
that the coordinate map

[-]g : Endp(R) = M, (F)
T+ [T5,

where [T]g denotes the matrix of T relative to B, is an isomorphism. It follows that the composite map,
pg(a) = [Ai]B, is an embedding of R into the matrix ring M,,(F'). When the field F' is familiar, this can be
a convenient way to realize more abstract rings that contain F' centrally.

When F' is not central in R, the construction of the left regular representation fails: A, may not preserve
scalar multiplication. The problem is that F' and R are both acting on the left. The easiest way out of
this situation is to simply let R act on the right instead. For a,z € R, define p,(x) = za. As above, p, is
additive, and for a € F' we have

Halaz) = (az)a = a(za) = ap, (@),

so that u, does preserve scalar multiplication of R by F. Thus u, € Endp(R). However, as one can easily
check, for a,b € R we have g, = ip © fta, SO that the rule a — u, need not define a homomorphism from R
to Endg(R).

When R has finite dimension n over I, we can remedy this situation with the transpose. As above, let B
be an F-basis for R, and consider o5 : R — Endp(R) given by a + [u4]}. Because the transpose is F-linear
and reverses the order of multiplication, we immediately conclude that oz is a homomorphism. As above,
composition with evaluation at 1g proves that o is injective. We call o the right reqular representation of
R3

In the case that R is infinite dimensional (e.g. R =R and F = Q), Endg(R) is no longer isomorphic to a
matrix ring, and “correcting” p becomes a bit more complicated. The transpose of a linear endomorphism
can be defined abstractly, but it requires the notion of a dual vector space, and at the end of the day one
ends up with an embedding of R into the endomorphism ring of its (vector space) dual, instead of Endp(R).

3 The Quaternions as a Complex Matrix Algebra

As a vector space over R, the ring H is four-dimensional, by definition. Therefore, the left regular represen-
tation of H over R will yield a subring of M4 (R) isomorphic to H. To compute it, first set ¢ = a+bi+cj+d k.
We then have

A(1)=¢q-1=gq,

M) =¢-i=-b+ai+dj—ck,
MN(G)=¢q-j=—c—di+aj+ bk,
Ak)=¢q-k=—d+ci—bj+ ak.

3Strictly speaking, using the definite article “the” is inappropriate, because o5 depends on the choice of B. However, we
will overlook this slight abuse of terminology.



So with B = {1,1,j,k}, we find that

a —-b —c —d
b a —-d ¢

pB(q) = P‘q]B i d a . (2)
d —c b a

It follows at once that H is isomorphic to the ring of all real matrices of the form (2).

Since
a+bi+cj+dk=a+bi+(c+di)j=z+ wj,
zeC weC

the set B = {1,j} is a C-basis for H, so that the dimension of H over C is 2. Because C is not central in H,
only the right regular representation over C is defined. For z,w € C we have

Mz-‘rw_j(l) = 1(Z + U}j) =z+ ’LUj7
Potwi(G) = i(z +wj) = Zj + wj% = —w + Zj.

(12 +wjlB = (; _Zw) ,

o5(z + wj) = [Harujlp = (_Zw l;) -

m={( % %)

is a subring of My (C) that is isomorphic to H, which is precisely what we sought to prove.

Consequently

so that

Hence the image of og, namely

z,wEC},



