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By a quotient of a group or ring X we mean an object in the same category, whose underlying set is
X/∼ for some equivalence ∼ on X, with the property that the natural surjection π : X → X/∼ is a
homomorphism. Only very specific equivalences can produce quotients. In the case that X is a group, ∼
must be congruence modulo a normal subgroup. If X is a ring, we must instead use congruence modulo an
ideal. In this brief note we will derive both of these facts.

Let X = G be a group and ∼ an equivalence relation on G. Suppose that × is a binary operation making
G/∼ into a group, and that π : G→ G/∼ is a homomorphism. This means that for any a, b ∈ G we have

[ab] = π(ab) = π(a)× π(b) = [a]× [b], (1)

where [x] denotes the equivalence class of x ∈ G. Let x ∈ [a] and y ∈ [b]. Then [x] = [a], [y] = [b] and
(1) implies that [xy] = [ab]. In particular, xy ∈ [ab]. Since x and y were arbitrary, this shows that the
element-wise set product [a] · [b] is contained in the class [ab], which proves our first lemma.

Lemma 1. Let G be a group and G/∼ be a quotient of G. Then for any A,B ∈ G/∼, A×B is the unique
class containing AB.

Given A,B,C ∈ G/∼ with A × B = C, we claim that C = AB. To see this, let y ∈ C and set
B′ = [a−1y]. Then y = a(a−1y) ∈ AB′. Because the classes in G/∼ are disjoint, and Lemma 1 implies
that AB′ is contained in some class, it must be that AB′ ⊂ C and hence C = A × B′. Since we also have
AB ⊂ A × B = C, we find that A × B = A × B′. Because (G/∼,×) is a group, this equality implies that
B = B′, and therefore y ∈ AB′ = AB. It follows that C = AB. This proves the next lemma.

Lemma 2. Let (G/∼,×) be a quotient of a group G. Then for any A,B ∈ G/∼, A×B = AB.

Lemma 2 shows that in order to understand the quotients of G, we need to investigate the equivalence
relations on G for which G/∼ is a group under element-wise multiplication of sets. To that end, let ∼ be
an equivalence relation on G/∼ so that (G/∼, ·) is a group. For any x, y ∈ G we have xy ∈ [x][y] ∈ G/∼,
so that [xy] = [x][y]. This proves that the natural surjection G→ G/∼ is a homomorphism, and hence that
(G/∼, ·) is a quotient of G. This also implies that [x−1] = [x]−1 for all x ∈ G.

Let H = [e]. For any C ∈ G/∼, we then have C ⊂ CH ∈ G/∼. Because distinct classes are disjoint,
we must then have C = CH. Similarly, C = HC, so that H is the identity in G/∼. We will now prove
that H < G. Let x, y ∈ H. According to our work in the preceding paragraph, we have [xy−1] = [x][y]−1 =
HH−1 = HH = H, which implies that xy−1 ∈ H. Because H 6= ∅, we conclude that H is a subgroup of G.

What about the other classes in G/∼? Let C ∈ G/∼. For any x, y ∈ C we have

[x−1y] = [x]−1[y] = C−1C = H ⇔ x−1y ∈ H ⇔ y ∈ xH.

Thus x ∼ y if and only if x ≡ y (mod H), and C = xH. That is, ∼ is congruence modulo H, and
G/∼= G/H, the corresponding left coset space. Had we started with the class [yx−1] instead, we would
have found instead that C = Hx. This means that xH = Hx for all x ∈ G, and so H C G. Moreover,
xyH = [xy] = [x][y] = (xH)(yH) for all x, y ∈ G. Conversely, we know that the coset space of a normal
subgroup always yields a quotient in this same manner, and we arrive at the following conclusion.



Theorem 1. Let G be a group. The quotients of G are precisely the coset spaces G/H with H C G and
multiplication given by (xH)(yH) = xyH.

We now turn our attention to quotient rings. Fortunately Let X = R be a ring with quotient (R/∼,⊕,⊗).
Because the natural surjection π : R → R/∼ preserves addition, it must be a homomorphism between the
additive groups (R,+) and (R/∼,⊕). According to Theorem 1, there is an additive subgroup I of R so that
R/∼= R/I, and ⊕ is just addition of cosets. As far as multiplication goes, for any a, b ∈ R we have

(a+ I)⊗ (b+ I) = π(a)⊗ π(b) = π(ab) = ab+ I.

If we omit × and simply concatenate, this becomes

(a+ I)(b+ I) = ab+ I.

Because R/I is a ring, and the additive identity is 0 + I = I, for any a ∈ R and b ∈ I we have

ab+ I = (a+ I)(b+ I) = (a+ I)(0 + I) = a0 + I = 0 + I = I.

Therefore ab ∈ I. Reversing the order of a and b we find that we likewise have ba ∈ I. In other words, I
is closed under both left and right multiplication by elements of R. This yields our first result on quotient
rings.

Theorem 2. Every quotient of a ring R has the form R/I, where I is an additive subgroup of R satisfying

a ∈ R, b ∈ I ⇒ ab, ba ∈ I. (2)

Addition and multiplication in R/I are given by

(a+ I) + (b+ I) = (a+ b) + I,

(a+ I)(b+ I) = ab+ I.
(3)

An additive subgroup I of R satisfying (2) is called an ideal of R. One can show that the converse of
Theorem 2 also holds. That is, if I is an ideal of R, then R/I is a quotient of R via the binary operations
(3). So the quotients of R are precisely the rings R/I, where I is an ideal in R.

Remark. Because it was inherited from the additive group structure of R, addition in R/I is just element-
wise addition of cosets. However, the same is not true of multiplication. The element-wise product of a+ I
and b+ I is contained in ab+ I, but in general will not be equal to it.


