On Quotients Groups and Quotient Rings

R. C. Daileda

By a quotient of a group or ring X we mean an object in the same category, whose underlying set is X/\sim for some equivalence \sim on X, with the property that the natural surjection $\pi : X \to X/\sim$ is a homomorphism. Only very specific equivalences can produce quotients. In the case that X is a group, \sim must be congruence modulo a normal subgroup. If X is a ring, we must instead use congruence modulo an ideal. In this brief note we will derive both of these facts.

Let X = G be a group and \sim an equivalence relation on G. Suppose that \times is a binary operation making G/\sim into a group, and that $\pi: G \to G/\sim$ is a homomorphism. This means that for any $a, b \in G$ we have

$$[ab] = \pi(ab) = \pi(a) \times \pi(b) = [a] \times [b], \tag{1}$$

where [x] denotes the equivalence class of $x \in G$. Let $x \in [a]$ and $y \in [b]$. Then [x] = [a], [y] = [b] and (1) implies that [xy] = [ab]. In particular, $xy \in [ab]$. Since x and y were arbitrary, this shows that the element-wise set product $[a] \cdot [b]$ is contained in the class [ab], which proves our first lemma.

Lemma 1. Let G be a group and G/\sim be a quotient of G. Then for any $A, B \in G/\sim$, $A \times B$ is the unique class containing AB.

Given $A, B, C \in G/\sim$ with $A \times B = C$, we claim that C = AB. To see this, let $y \in C$ and set $B' = [a^{-1}y]$. Then $y = a(a^{-1}y) \in AB'$. Because the classes in G/\sim are disjoint, and Lemma 1 implies that AB' is contained in some class, it must be that $AB' \subset C$ and hence $C = A \times B'$. Since we also have $AB \subset A \times B = C$, we find that $A \times B = A \times B'$. Because $(G/\sim, \times)$ is a group, this equality implies that B = B', and therefore $y \in AB' = AB$. It follows that C = AB. This proves the next lemma.

Lemma 2. Let $(G/\sim, \times)$ be a quotient of a group G. Then for any $A, B \in G/\sim, A \times B = AB$.

Lemma 2 shows that in order to understand the quotients of G, we need to investigate the equivalence relations on G for which G/\sim is a group under element-wise multiplication of sets. To that end, let \sim be an equivalence relation on G/\sim so that $(G/\sim, \cdot)$ is a group. For any $x, y \in G$ we have $xy \in [x][y] \in G/\sim$, so that [xy] = [x][y]. This proves that the natural surjection $G \to G/\sim$ is a homomorphism, and hence that $(G/\sim, \cdot)$ is a quotient of G. This also implies that $[x^{-1}] = [x]^{-1}$ for all $x \in G$.

Let H = [e]. For any $C \in G/\sim$, we then have $C \subset CH \in G/\sim$. Because distinct classes are disjoint, we must then have C = CH. Similarly, C = HC, so that H is the identity in G/\sim . We will now prove that H < G. Let $x, y \in H$. According to our work in the preceding paragraph, we have $[xy^{-1}] = [x][y]^{-1} =$ $HH^{-1} = HH = H$, which implies that $xy^{-1} \in H$. Because $H \neq \emptyset$, we conclude that H is a subgroup of G.

What about the other classes in G/\sim ? Let $C \in G/\sim$. For any $x, y \in C$ we have

$$[x^{-1}y] = [x]^{-1}[y] = C^{-1}C = H \quad \Leftrightarrow \quad x^{-1}y \in H \quad \Leftrightarrow \quad y \in xH.$$

Thus $x \sim y$ if and only if $x \equiv y \pmod{H}$, and C = xH. That is, \sim is congruence modulo H, and $G/\sim = G/H$, the corresponding left coset space. Had we started with the class $[yx^{-1}]$ instead, we would have found instead that C = Hx. This means that xH = Hx for all $x \in G$, and so $H \triangleleft G$. Moreover, xyH = [xy] = [x][y] = (xH)(yH) for all $x, y \in G$. Conversely, we know that the coset space of a normal subgroup always yields a quotient in this same manner, and we arrive at the following conclusion.

Theorem 1. Let G be a group. The quotients of G are precisely the coset spaces G/H with $H \triangleleft G$ and multiplication given by (xH)(yH) = xyH.

We now turn our attention to quotient rings. Fortunately Let X = R be a ring with quotient $(R/\sim, \oplus, \otimes)$. Because the natural surjection $\pi : R \to R/\sim$ preserves addition, it must be a homomorphism between the additive groups (R, +) and $(R/\sim, \oplus)$. According to Theorem 1, there is an additive subgroup I of R so that $R/\sim = R/I$, and \oplus is just addition of cosets. As far as multiplication goes, for any $a, b \in R$ we have

$$(a+I)\otimes(b+I)=\pi(a)\otimes\pi(b)=\pi(ab)=ab+I.$$

If we omit \times and simply concatenate, this becomes

$$(a+I)(b+I) = ab+I.$$

Because R/I is a ring, and the additive identity is 0 + I = I, for any $a \in R$ and $b \in I$ we have

$$ab + I = (a + I)(b + I) = (a + I)(0 + I) = a0 + I = 0 + I = I.$$

Therefore $ab \in I$. Reversing the order of a and b we find that we likewise have $ba \in I$. In other words, I is closed under both left and right multiplication by elements of R. This yields our first result on quotient rings.

Theorem 2. Every quotient of a ring R has the form R/I, where I is an additive subgroup of R satisfying

$$a \in R, b \in I \Rightarrow ab, ba \in I.$$
 (2)

Addition and multiplication in R/I are given by

$$(a+I) + (b+I) = (a+b) + I, (a+I)(b+I) = ab + I.$$
(3)

An additive subgroup I of R satisfying (2) is called an *ideal* of R. One can show that the converse of Theorem 2 also holds. That is, if I is an ideal of R, then R/I is a quotient of R via the binary operations (3). So the quotients of R are precisely the rings R/I, where I is an ideal in R.

Remark. Because it was inherited from the additive group structure of R, addition in R/I is just elementwise addition of cosets. However, the same is not true of multiplication. The element-wise product of a + Iand b + I is contained in ab + I, but in general will not be equal to it.