On Quotients Groups and Quotient Rings

R. C. Daileda

By a quotient of a group or ring X we mean an object in the same category, whose underlying set is X / \sim for some equivalence \sim on X, with the property that the natural surjection $\pi: X \rightarrow X / \sim$ is a homomorphism. Only very specific equivalences can produce quotients. In the case that X is a group, \sim must be congruence modulo a normal subgroup. If X is a ring, we must instead use congruence modulo an ideal. In this brief note we will derive both of these facts.

Let $X=G$ be a group and \sim an equivalence relation on G. Suppose that \times is a binary operation making G / \sim into a group, and that $\pi: G \rightarrow G / \sim$ is a homomorphism. This means that for any $a, b \in G$ we have

$$
\begin{equation*}
[a b]=\pi(a b)=\pi(a) \times \pi(b)=[a] \times[b], \tag{1}
\end{equation*}
$$

where $[x]$ denotes the equivalence class of $x \in G$. Let $x \in[a]$ and $y \in[b]$. Then $[x]=[a],[y]=[b]$ and (1) implies that $[x y]=[a b]$. In particular, $x y \in[a b]$. Since x and y were arbitrary, this shows that the element-wise set product $[a] \cdot[b]$ is contained in the class $[a b]$, which proves our first lemma.

Lemma 1. Let G be a group and G / \sim be a quotient of G. Then for any $A, B \in G / \sim, A \times B$ is the unique class containing $A B$.

Given $A, B, C \in G / \sim$ with $A \times B=C$, we claim that $C=A B$. To see this, let $y \in C$ and set $B^{\prime}=\left[a^{-1} y\right]$. Then $y=a\left(a^{-1} y\right) \in A B^{\prime}$. Because the classes in G / \sim are disjoint, and Lemma 1 implies that $A B^{\prime}$ is contained in some class, it must be that $A B^{\prime} \subset C$ and hence $C=A \times B^{\prime}$. Since we also have $A B \subset A \times B=C$, we find that $A \times B=A \times B^{\prime}$. Because $(G / \sim, \times)$ is a group, this equality implies that $B=B^{\prime}$, and therefore $y \in A B^{\prime}=A B$. It follows that $C=A B$. This proves the next lemma.

Lemma 2. Let $(G / \sim, \times)$ be a quotient of a group G. Then for any $A, B \in G / \sim, A \times B=A B$.
Lemma 2 shows that in order to understand the quotients of G, we need to investigate the equivalence relations on G for which G / \sim is a group under element-wise multiplication of sets. To that end, let \sim be an equivalence relation on G / \sim so that $(G / \sim, \cdot)$ is a group. For any $x, y \in G$ we have $x y \in[x][y] \in G / \sim$, so that $[x y]=[x][y]$. This proves that the natural surjection $G \rightarrow G / \sim$ is a homomorphism, and hence that $(G / \sim, \cdot)$ is a quotient of G. This also implies that $\left[x^{-1}\right]=[x]^{-1}$ for all $x \in G$.

Let $H=[e]$. For any $C \in G / \sim$, we then have $C \subset C H \in G / \sim$. Because distinct classes are disjoint, we must then have $C=C H$. Similarly, $C=H C$, so that H is the identity in G / \sim. We will now prove that $H<G$. Let $x, y \in H$. According to our work in the preceding paragraph, we have $\left[x y^{-1}\right]=[x][y]^{-1}=$ $H H^{-1}=H H=H$, which implies that $x y^{-1} \in H$. Because $H \neq \varnothing$, we conclude that H is a subgroup of G.

What about the other classes in G / \sim ? Let $C \in G / \sim$. For any $x, y \in C$ we have

$$
\left[x^{-1} y\right]=[x]^{-1}[y]=C^{-1} C=H \Leftrightarrow x^{-1} y \in H \Leftrightarrow y \in x H .
$$

Thus $x \sim y$ if and only if $x \equiv y(\bmod H)$, and $C=x H$. That is, \sim is congruence modulo H, and $G / \sim=G / H$, the corresponding left coset space. Had we started with the class $\left[y x^{-1}\right]$ instead, we would have found instead that $C=H x$. This means that $x H=H x$ for all $x \in G$, and so $H \triangleleft G$. Moreover, $x y H=[x y]=[x][y]=(x H)(y H)$ for all $x, y \in G$. Conversely, we know that the coset space of a normal subgroup always yields a quotient in this same manner, and we arrive at the following conclusion.

Theorem 1. Let G be a group. The quotients of G are precisely the coset spaces G / H with $H \triangleleft G$ and multiplication given by $(x H)(y H)=x y H$.

We now turn our attention to quotient rings. Fortunately Let $X=R$ be a ring with quotient $(R / \sim, \oplus, \otimes)$. Because the natural surjection $\pi: R \rightarrow R / \sim$ preserves addition, it must be a homomorphism between the additive groups $(R,+)$ and $(R / \sim, \oplus)$. According to Theorem 1 , there is an additive subgroup I of R so that $R / \sim=R / I$, and \oplus is just addition of cosets. As far as multiplication goes, for any $a, b \in R$ we have

$$
(a+I) \otimes(b+I)=\pi(a) \otimes \pi(b)=\pi(a b)=a b+I
$$

If we omit \times and simply concatenate, this becomes

$$
(a+I)(b+I)=a b+I
$$

Because R / I is a ring, and the additive identity is $0+I=I$, for any $a \in R$ and $b \in I$ we have

$$
a b+I=(a+I)(b+I)=(a+I)(0+I)=a 0+I=0+I=I
$$

Therefore $a b \in I$. Reversing the order of a and b we find that we likewise have $b a \in I$. In other words, I is closed under both left and right multiplication by elements of R. This yields our first result on quotient rings.

Theorem 2. Every quotient of a ring R has the form R / I, where I is an additive subgroup of R satisfying

$$
\begin{equation*}
a \in R, b \in I \Rightarrow a b, b a \in I \tag{2}
\end{equation*}
$$

Addition and multiplication in R / I are given by

$$
\begin{align*}
(a+I)+(b+I) & =(a+b)+I \tag{3}\\
(a+I)(b+I) & =a b+I
\end{align*}
$$

An additive subgroup I of R satisfying (2) is called an ideal of R. One can show that the converse of Theorem 2 also holds. That is, if I is an ideal of R, then R / I is a quotient of R via the binary operations (3). So the quotients of R are precisely the rings R / I, where I is an ideal in R.

Remark. Because it was inherited from the additive group structure of R, addition in R / I is just elementwise addition of cosets. However, the same is not true of multiplication. The element-wise product of $a+I$ and $b+I$ is contained in $a b+I$, but in general will not be equal to it.

