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Introduction

The notion of differentiability is central to the study of calculus.

In one variable, the differentiability of f (x) amounts to the
existence of the derivative f ′(x).

In multiple variables, however, the existence of partial derivatives is
not equivalent to differentiability.

To be truly differentiable a function must be “locally linear,” a
feature that partial derivatives alone cannot capture.
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Recall

A function f (x) is differentiable at x = a provided

f ′(a) = lim
x→a

f (x)− f (a)

x − a
exists.

In this case the linear approximation to f at a is

L(x) = f ′(a)(x − a) + f (a),

which is just the function whose graph is the tangent line.

Question: How should we define differentiability for functions of
two or more variables?
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First Attempt

Given f (x , y) and a point (a, b), we might say that f is
differentiable at (a, b) provided

lim
(x ,y)→(a,b)

f (x , y)− f (a, b)
√

(x − a)2 + (y − b)2

exists.

However, this limit usually fails to exist!

For instance, if we approach (a, b) parallel to the coordinate axes
we get the partial derivatives fx(a, b) and fy (a, b), which need not
agree.
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Reinterpretation

To find out what differentiability “really” means, let’s return to the
single variable case:

f ′(a) = lim
x→a

f (x)− f (a)

x − a
.

This is equivalent to

lim
x→a

(

f (x)− f (a)

x − a
− f ′(a)

)

= 0.

But

f (x)− f (a)

x − a
− f ′(a) =

f (x) − f (a)− f ′(a)(x − a)

x − a
=

f (x)− L(x)

x − a
.
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That is, f is differentiable at = a provided

lim
x→a

f (x)− L(x)

x − a
= 0,

where L is the linear approximation to f at a.

This can be interpreted as saying that as x → a, L becomes a
“very good” approximation to f .

Put another way, as we zoom in on the point (a, f (a)), the graph
of f becomes linear.

It turns out that this idea carries over to multiple variables very
easily.
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Second Attempt

Definition

Given a function f (x , y) and a point (a, b), the linear

approximation to f at (a, b) is

L(x , y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b).

The graph of L is a plane. Since

L(a, b) = f (a, b) and Lx(a, b) = fx(a, b) and Ly (a, b) = fy(a, b),

the graph of f is tangent to this plane in the x and y directions.

We will define f to be differentiable at (a, b) provided L is a “good
approximation” to f as (x , y) → (a, b), akin to the one variable
situation.
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Definition

Given a function f (x , y) and a point (a, b), we say that f is
differentiable at (a, b) provided

lim
(x ,y)→(a,b)

f (x , y) − L(x , y)
√

(x − a)2 + (y − b)2
= 0,

where L is the linear approximation to f at (a, b).

Remarks.

The graph of a differentiable function becomes planar as we
zoom in on any point.

We can define linear approximations and differentiability in
any number of variables in a similar way.
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It is useful to have criteria for differentiability that don’t involve
the evaluation of a multivariate limit.

Fortunately there is one that is particularly simple.

Theorem 1

If fx and fy are continuous at (a, b), then f is differentiable at

(a, b).

Example. Let f (x , y) = 4x2 − y2 + 2y . Then fx(x , y) = 8x and
fy (x , y) = − 2y + 2.

Since fx and fy are polynomials, they are continuous everywhere.

It follows that f is differentiable everywhere.
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Example 1

Let f (x , y) =
√

20− x2 − 7y2. Use a linear approximation to
estimate f (1.99, 1.01).

Solution. Since

fx(x , y) =
−x

√

20− x2 − 7y2
and fy(x , y) =

−7y
√

20− x2 − 7y2

are continuous where 20− x2 − 7y2 > 0, f is differentiable at the
point (2, 1).

Thus f (1.99, 1.01) ≈ L(1.99, 1.01), where L is the linear
approximation to f at (2, 1).
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Because
f (2, 1) =

√
20− 4− 7 =

√
9 = 3,

fx(2, 1) =
−2√

20− 4− 7
=

−2

3
,

fy (2, 1) =
−7√

20− 4− 7
=

−7

3
,

the linear approximation is

L(x , y) = 3− 2

3
(x − 2)− 7

3
(y − 1).

Therefore

f (1.99, 1.01) ≈ L(1.99, 1.01) = 3− 2

3
(−0.01) − 7

3
(0.01)

=
895

300
= 2.98333 . . .

Daileda Differentiability



Differentials

Definition

The differential of f (x , y) is df = fx(x , y) dx + fy(x , y) dy .

If we change (a, b) to (a + dx , b + dy), it is not hard to see that

df = exact change in L.

It follows that if f is differentiable at (a, b), then

df ≈ change in f .

Remark. We have an analogous definition and interpretation in
any number of variables.
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Example

The differential of f (x , y , z) = ex
2+yz is

df = 2xex
2+yz dx + zex

2+yx dy + yex
2+yz dz .

Because the partial derivatives are continuous everywhere, f is
differentiable everywhere.

So, if we move from (0, 2, 0) to (0.1, 1.95, 0.01), the approximate
change in f is

df = 2 · 0 · 0.1 + 0 · (−0.05) + 2e0
2+0 · 0.01 = 0.02.
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Another Example

Example 2

Four positive numbers are rounded to the first decimal place and
multiplied together. Estimate the absolute relative error in the
product introduced by rounding.

Solution. Denote the four numbers by n1, n2, n3 and n4, and their
product by P :

P = n1n2n3n4.

The differential of P is

dP = n2n3n4 dn1 + n1n3n4 dn2 + n1n2n4 dn3 + n1n2n3 dn4

=
P

n1
dn1 +

P

n2
dn2 +

P

n3
dn3 +

P

n4
dn4.
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The approximate relative error introduced by changing n1, n2, n3
and n4 is therefore

dP

P
=

dn1

n1
+

dn2

n2
+

dn3

n3
+

dn4

n4
.

When rounding, one has |dni | ≤ 0.05 for all i .

Thus
∣

∣

∣

∣

dP

P

∣

∣

∣

∣

≤ 0.05

(

1

n1
+

1

n2
+

1

n3
+

1

n4

)

.
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