Directional Derivatives and the Gradient Vector

Ryan C. Daileda

Trinity University

Calculus III

Introduction

Directional Derivatives

Given a function $f(x, y)$, a point $\left(x_{0}, y_{0}\right)$ and vector $\mathbf{v}=\langle a, b\rangle$ we ask: what is the "slope" of the graph of f at $\left(x_{0}, y_{0}\right)$ in the v-direction?

The partial derivatives f_{x} and f_{y} answer this question when $\mathbf{v}=\mathbf{i}, \mathbf{j}$.
As with f_{x} and f_{y}, we can express the answer as a limit of difference quotients.

The line through $\left(x_{0}, y_{0}\right)$ in the \mathbf{v}-direction has the parametric form

$$
\begin{aligned}
& x=x_{0}+a t, \\
& y=y_{0}+b t .
\end{aligned}
$$

The slope between $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ and $(x, y, f(x, y))$ is

$$
\begin{aligned}
\frac{f(x, y)-f\left(x_{0}, y_{0}\right)}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}} & =\frac{f\left(x_{0}+a t, y_{0}+b t\right)-f\left(x_{0}, y_{0}\right)}{\sqrt{\left(\left(x_{0}+a t\right)-x_{0}\right)^{2}+\left(\left(y_{0}+b t\right)-y_{0}\right)^{2}}} \\
& =\frac{f\left(x_{0}+a t, y_{0}+b t\right)-f\left(x_{0}, y_{0}\right)}{\sqrt{a^{2} t^{2}+b^{2} t^{2}}} \\
& =\frac{f\left(x_{0}+a t, y_{0}+b t\right)-f\left(x_{0}, y_{0}\right)}{t|\mathbf{v}|}
\end{aligned}
$$

Definition

We define the directional derivative of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$ in the $\mathbf{v}=\langle a, b\rangle$-direction to be

$$
D_{\mathbf{v}} f\left(x_{0}, y_{0}\right)=\lim _{t \rightarrow 0} \frac{f\left(x_{0}+a t, y_{0}+b t\right)-f\left(x_{0}, y_{0}\right)}{t|\mathbf{v}|}
$$

Computing the Directional Derivative

To compute $D_{\mathbf{v}} f$, we introduce the linear approximation at $\left(x_{0}, y_{0}\right)$:

$$
L(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

We then examine the effect of "replacing" f by L in the limit defining $D_{v} f$:

$$
\begin{aligned}
& \frac{f\left(x_{0}+a t, y_{0}+b t\right)-f\left(x_{0}, y_{0}\right)}{t|\mathbf{v}|}= \\
&=\frac{f\left(x_{0}+a t, y_{0}+b t\right)-L\left(x_{0}+a t, y_{0}+b t\right)}{t|\mathbf{v}|} \\
&+\frac{L\left(x_{0}+a t, y_{0}+b t\right)-f\left(x_{0}, y_{0}\right)}{t|\mathbf{v}|}
\end{aligned}
$$

$$
\begin{aligned}
=\frac{f\left(x_{0}+a t, y_{0}+b t\right)-L\left(x_{0}+a t, y_{0}+b t\right)}{t|\mathbf{v}|} & \\
& +\frac{f_{x}\left(x_{0}, y_{0}\right) a t+f_{y}\left(x_{0}, y_{0}\right) b t}{t|\mathbf{v}|} \\
=\frac{f\left(x_{0}+a t, y_{0}+b t\right)-L\left(x_{0}+a t, y_{0}+b t\right)}{t|\mathbf{v}|} & +\frac{f_{x}\left(x_{0}, y_{0}\right) a+f_{y}\left(x_{0}, y_{0}\right) b}{|\mathbf{v}|}
\end{aligned}
$$

If f is differentiable at $\left(x_{0}, y_{0}\right)$, then

$$
\lim _{t \rightarrow 0} \frac{f\left(x_{0}+a t, y_{0}+b t\right)-L\left(x_{0}+a t, y_{0}+b t\right)}{t|\mathbf{v}|}=0
$$

We conclude that:

Theorem 1

If $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$ and $\mathbf{v}=\langle a, b\rangle$, then

$$
D_{\mathbf{v}} f\left(x_{0}, y_{0}\right)=\frac{f_{x}\left(x_{0}, y_{0}\right) a+f_{y}\left(x_{0}, y_{0}\right) b}{|\mathbf{v}|}
$$

Remarks.

- Notice that when $\mathbf{v}=\mathbf{i}, \mathbf{j}$ we recover f_{x} and f_{y}.
- The textbook assumes that \mathbf{v} is a unit vector, and therefore does not divide by $|\mathbf{v}|$ in its formula for $D_{\mathbf{v}} f$.

Example 1

Find the directional derivative of $f(x, y)=1+2 x \sqrt{y}$ at $(3,4)$ in the direction of $\mathbf{v}=\langle 4,-3\rangle$.

Solution. First we compute the partial derivatives:

$$
f_{x}(x, y)=2 \sqrt{y}, \quad f_{y}(x, y)=\frac{x}{\sqrt{y}}
$$

Thus

$$
f_{x}(3,4)=2 \sqrt{4}=4, \quad f_{y}(3,4)=\frac{3}{\sqrt{4}}=\frac{3}{2} .
$$

Therefore

$$
D_{\mathbf{v}} f(3,4)=\frac{4 \cdot 4+\frac{3}{2} \cdot(-3)}{\sqrt{4^{2}+(-3)^{2}}}=\frac{16-\frac{9}{2}}{5}=\frac{23}{10}=2.3
$$

The Gradient Vector

Definition

The gradient (vector) of $f(x, y)$ is

$$
\nabla f=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle
$$

Examples.

1. The gradient of $f(x, y)=1+2 x \sqrt{y}$ is

$$
\nabla f=\left\langle 2 \sqrt{y}, \frac{x}{\sqrt{y}}\right\rangle
$$

2. The gradient of $f(x, y)=2 x^{2}+3 y^{2}-5 x y$ is

$$
\nabla f=\langle 4 x-5 y, 6 y-5 x\rangle
$$

Remarks

- The gradient is our first example of a vector field.
- When f is differentiable, we regard ∇f as its derivative.
- Notice that if $\mathbf{v}=\langle a, b\rangle$, then

$$
D_{\mathbf{v}} f=\frac{f_{x} a+f_{y} b}{|\mathbf{v}|}=\frac{\left\langle f_{x}, f_{y}\right\rangle \cdot\langle a, b\rangle}{|\mathbf{v}|}=\frac{\nabla f \cdot \mathbf{v}}{|\mathbf{v}|} .
$$

Example 2

Find the directional derivative of $f(x, y)=2 x^{2}-3 y^{2}+5 x y$ at $(1,1)$ toward the origin.

Solution. The vector pointing toward the origin from $(1,1)$ is $\mathbf{v}=\langle-1,-1\rangle$.
The gradient of f is

$$
\nabla f=\langle 4 x+5 y,-6 y+5 x\rangle \Rightarrow \nabla f(1,1)=\langle 9,-1\rangle
$$

Therefore

$$
D_{\mathbf{v}} f(1,1)=\frac{\nabla f \cdot \mathbf{v}}{|\mathbf{v}|}=\frac{\langle 9,-1\rangle \cdot\langle-1,-1\rangle}{\sqrt{(-1)^{2}+(-1)^{2}}}=\frac{-8}{\sqrt{2}}=-4 \sqrt{2} .
$$

Geometry of the Gradient

Suppose that \mathbf{v} makes an angle of θ with ∇f (at a particular point).

Then

$$
D_{\mathbf{v}} f=\frac{\nabla f \cdot \mathbf{v}}{|\mathbf{v}|}=\frac{|\nabla f||\mathbf{v}| \cos \theta}{\mathbf{v}}=|\nabla f| \cos \theta
$$

This is as large as possible when $\theta=0$. Thus we have the following interpretation of the geometry of ∇f.

Theorem 2

The direction of ∇f is the direction of the greatest increase of f, and $|\nabla f|$ is the rate of change of f in that direction.

Example 3

Let $f(x, y)=x^{2}+x y+y^{2}$. At $(-1,3)$, in what direction does f increase most rapidly? What is the rate of change of f in that direction?

Solution. We are simply being asked to compute $\nabla f(-1,3)$ and its magnitude.
Since

$$
\nabla f=\langle 2 x+y, x+2 y\rangle
$$

the greatest rate of change at $(-1,3)$ occurs in the direction of

$$
\nabla f(-1,3)=\langle 1,5\rangle .
$$

The rate of change of f in that direction is

$$
|\nabla f(-1,3)|=\sqrt{1^{2}+5^{2}}=\sqrt{26} .
$$

Contours and Gradients

If we move along one of its contours, $f(x, y)$ remains constant.

So if \mathbf{v} is tangent to a contour of $f(x, y)$, then

$$
0=D_{\mathbf{v}} f=\frac{\nabla f \cdot \mathbf{v}}{|\mathbf{v}|} \Rightarrow \nabla f \cdot \mathbf{v}=0
$$

That is, ∇f is perpendicular to the contours of f.

Example 4

Find the tangent line to the curve $x^{3}+x y+y^{3}=3$ at $(1,1)$.

Solution. The given curve is a contour of the function $f(x, y)=x^{3}+x y+y^{3}$.

Since $\nabla f=\left\langle 3 x^{2}+y, x+3 y^{2}\right\rangle$, the vector

$$
\nabla f(1,1)=\langle 4,4\rangle
$$

will be perpendicular to $x^{3}+x y+y^{3}=3$.
It follows that the tangent line has the equation

$$
4(x-1)+4(y-1)=0 \text { or } y=2-x \text {. }
$$

Gradients in More Variables

We can talk about directional derivatives and gradients in any number of variables, we simply need to include additional components in our computations.

Example 5

Let $T(x, y, z)=\frac{3 x^{2}-5 y}{z}$. At $(1,2,3)$, at what rate does T change if we go in the $\mathbf{v}=\langle-1,0,1\rangle$ direction? In what direction does T increase most rapidly at $(1,2,3)$? What is the rate of change of T in this direction?

Solution. We begin by computing the gradient:

$$
\nabla T=\left\langle\frac{6 x}{z}, \frac{-5}{z}, \frac{5 y-3 x^{2}}{z^{2}}\right\rangle
$$

At $(1,2,3)$ we have

$$
\nabla T(1,2,3)=\left\langle 2, \frac{-5}{3}, \frac{7}{9}\right\rangle
$$

So the rate of change in the $\mathbf{v}=\langle-1,0,1\rangle$ direction is

$$
D_{\mathrm{v}} T(1,2,3)=\frac{\langle 2,-5 / 3,7 / 9\rangle \cdot\langle-1,0,1\rangle}{\sqrt{(-1)^{2}+0^{2}+1^{2}}}=\frac{-2+\frac{7}{9}}{\sqrt{2}}=-\frac{11}{9 \sqrt{2}}
$$

T increases most rapidly in the direction of

$$
\nabla T(1,2,3)=\left\langle 2, \frac{-5}{3}, \frac{7}{9}\right\rangle,
$$

with a rate of change given by

$$
|\nabla T(1,2,3)|=\sqrt{2^{2}+\left(\frac{-5}{3}\right)^{2}+\left(\frac{7}{9}\right)^{2}}=\frac{\sqrt{598}}{9}
$$

Example 6

Find the tangent plane to the surface

$$
x \sin y+y \sin z+z \sin x=3
$$

at the point $(0,3 \sqrt{2}, \pi / 4)$.
Solution. The surface in question is a level surface of

$$
F(x, y, z)=x \sin y+y \sin z+z \sin x .
$$

In analogy with the two-variable situation, one can show that
∇F is orthogonal to level surfaces of F.

This means that we can use $\nabla F(0,3 \sqrt{2}, \pi / 4)$ for our normal vector.

We have

$$
\nabla F=\langle\sin y+z \cos x, x \cos y+\sin z, y \cos z+\sin x\rangle
$$

Thus

$$
\nabla F(0,3 \sqrt{2}, \pi / 4)=\left\langle\sin 3 \sqrt{2}+\frac{\pi}{4}, \frac{\sqrt{2}}{2}, 3\right\rangle
$$

The tangent plane therefore has the equation

$$
\left(\sin 3 \sqrt{2}+\frac{\pi}{4}\right) x+\frac{\sqrt{2}}{2}(y-3 \sqrt{2})+3\left(z-\frac{\pi}{4}\right)=0
$$

