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Directional Derivatives

Given a function f (x , y), a point (x0, y0) and vector v = 〈a, b〉 we
ask: what is the “slope” of the graph of f at (x0, y0) in the
v-direction?

The partial derivatives fx and fy answer this question when v = i, j.

As with fx and fy , we can express the answer as a limit of
difference quotients.

The line through (x0, y0) in the v-direction has the parametric form

x = x0 + at,

y = y0 + bt.
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The slope between (x0, y0, f (x0, y0)) and (x , y , f (x , y)) is

f (x , y)− f (x0, y0)
√

(x − x0)2 + (y − y0)2
=

f (x0 + at, y0 + bt)− f (x0, y0)
√

((x0 + at)− x0)2 + ((y0 + bt)− y0)2

=
f (x0 + at, y0 + bt)− f (x0, y0)√

a2t2 + b2t2

=
f (x0 + at, y0 + bt)− f (x0, y0)

t|v| .

Definition

We define the directional derivative of f (x , y) at (x0, y0) in the
v = 〈a, b〉-direction to be

Dvf (x0, y0) = lim
t→0

f (x0 + at, y0 + bt)− f (x0, y0)

t|v| .
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Computing the Directional Derivative

To compute Dvf , we introduce the linear approximation at (x0, y0):

L(x , y) = f (x0, y0) + fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0).

We then examine the effect of “replacing” f by L in the limit
defining Dvf :

f (x0 + at, y0 + bt)− f (x0, y0)

t|v| =

=
f (x0 + at, y0 + bt)− L(x0 + at, y0 + bt)

t|v|

+
L(x0 + at, y0 + bt)− f (x0, y0)

t|v|
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=
f (x0 + at, y0 + bt)− L(x0 + at, y0 + bt)

t|v|

+
fx(x0, y0)at + fy (x0, y0)bt

t|v|

=
f (x0 + at, y0 + bt)− L(x0 + at, y0 + bt)

t|v|

+
fx(x0, y0)a + fy (x0, y0)b

|v| .

If f is differentiable at (x0, y0), then

lim
t→0

f (x0 + at, y0 + bt)− L(x0 + at, y0 + bt)

t|v| = 0.
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We conclude that:

Theorem 1

If f (x , y) is differentiable at (x0, y0) and v = 〈a, b〉, then

Dvf (x0, y0) =
fx(x0, y0)a + fy (x0, y0)b

|v| .

Remarks.

Notice that when v = i, j we recover fx and fy .

The textbook assumes that v is a unit vector, and therefore
does not divide by |v| in its formula for Dvf .
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Example 1

Find the directional derivative of f (x , y) = 1 + 2x
√
y at (3, 4) in

the direction of v = 〈4,−3〉.

Solution. First we compute the partial derivatives:

fx(x , y) = 2
√
y , fy (x , y) =

x√
y
.

Thus

fx(3, 4) = 2
√
4 = 4, fy (3, 4) =

3√
4
=

3

2
.

Therefore

Dvf (3, 4) =
4 · 4 + 3

2
· (−3)

√

42 + (−3)2
=

16− 9
2

5
=

23

10
= 2.3
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The Gradient Vector

Definition

The gradient (vector) of f (x , y) is

∇f = 〈fx(x , y), fy (x , y)〉.

Examples.

1. The gradient of f (x , y) = 1 + 2x
√
y is

∇f =

〈

2
√
y ,

x√
y

〉

.

2. The gradient of f (x , y) = 2x2 + 3y2 − 5xy is

∇f = 〈4x − 5y , 6y − 5x〉.
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Remarks

The gradient is our first example of a vector field.

When f is differentiable, we regard ∇f as its derivative.

Notice that if v = 〈a, b〉, then

Dvf =
fxa+ fyb

|v| =
〈fx , fy 〉 · 〈a, b〉

|v| =
∇f · v
|v| .
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Example 2

Find the directional derivative of f (x , y) = 2x2 − 3y2 + 5xy at
(1, 1) toward the origin.

Solution. The vector pointing toward the origin from (1, 1) is
v = 〈−1,−1〉.
The gradient of f is

∇f = 〈4x + 5y , − 6y + 5x〉 ⇒ ∇f (1, 1) = 〈9,−1〉.

Therefore

Dvf (1, 1) =
∇f · v
|v| =

〈9,−1〉 · 〈−1,−1〉
√

(−1)2 + (−1)2
=

−8√
2
= −4

√
2 .
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Geometry of the Gradient

Suppose that v makes an angle of θ with ∇f (at a particular
point).

Then

Dvf =
∇f · v
|v| =

|∇f ||v| cos θ
v

= |∇f | cos θ.

This is as large as possible when θ = 0. Thus we have the
following interpretation of the geometry of ∇f .

Theorem 2

The direction of ∇f is the direction of the greatest increase of f ,
and |∇f | is the rate of change of f in that direction.
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Example 3

Let f (x , y) = x2 + xy + y2. At (−1, 3), in what direction does f
increase most rapidly? What is the rate of change of f in that
direction?

Solution. We are simply being asked to compute ∇f (−1, 3) and its
magnitude.
Since

∇f = 〈2x + y , x + 2y〉
the greatest rate of change at (−1, 3) occurs in the direction of

∇f (−1, 3) = 〈1, 5〉 .

The rate of change of f in that direction is

|∇f (−1, 3)| =
√

12 + 52 =
√
26 .

Daileda Directional Derivatives



Contours and Gradients

If we move along one of its contours, f (x , y) remains constant.

So if v is tangent to a contour of f (x , y), then

0 = Dvf =
∇f · v
|v| ⇒ ∇f · v = 0.

That is,

∇f is perpendicular to the contours of f .
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Example 4

Find the tangent line to the curve x3 + xy + y3 = 3 at (1, 1).

Solution. The given curve is a contour of the function
f (x , y) = x3 + xy + y3.

Since ∇f = 〈3x2 + y , x + 3y2〉, the vector

∇f (1, 1) = 〈4, 4〉

will be perpendicular to x3 + xy + y3 = 3.

It follows that the tangent line has the equation

4(x − 1) + 4(y − 1) = 0 or y = 2− x .

Daileda Directional Derivatives



Gradients in More Variables

We can talk about directional derivatives and gradients in any
number of variables, we simply need to include additional
components in our computations.

Example 5

Let T (x , y , z) =
3x2 − 5y

z
. At (1, 2, 3), at what rate does T

change if we go in the v = 〈−1, 0, 1〉 direction? In what direction
does T increase most rapidly at (1, 2, 3)? What is the rate of
change of T in this direction?

Solution. We begin by computing the gradient:

∇T =

〈

6x

z
,
−5

z
,
5y − 3x2

z2

〉

.
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At (1, 2, 3) we have

∇T (1, 2, 3) =

〈

2,
−5

3
,
7

9

〉

.

So the rate of change in the v = 〈−1, 0, 1〉 direction is

DvT (1, 2, 3) =
〈2,−5/3, 7/9〉 · 〈−1, 0, 1〉

√

(−1)2 + 02 + 12
=

−2 + 7
9√

2
= − 11

9
√
2
.

T increases most rapidly in the direction of

∇T (1, 2, 3) =

〈

2,
−5

3
,
7

9

〉

,

with a rate of change given by

|∇T (1, 2, 3)| =

√

22 +

(−5

3

)2

+

(

7

9

)2

=

√
598

9
.
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Example 6

Find the tangent plane to the surface

x sin y + y sin z + z sin x = 3

at the point (0, 3
√
2, π/4).

Solution. The surface in question is a level surface of

F (x , y , z) = x sin y + y sin z + z sin x .

In analogy with the two-variable situation, one can show that

∇F is orthogonal to level surfaces of F .

This means that we can use ∇F (0, 3
√
2, π/4) for our normal

vector.
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We have

∇F = 〈sin y + z cos x , x cos y + sin z , y cos z + sin x〉.

Thus

∇F (0, 3
√
2, π/4) =

〈

sin 3
√
2 +

π

4
,

√
2

2
, 3

〉

.

The tangent plane therefore has the equation

(

sin 3
√
2 +

π

4

)

x +

√
2

2
(y − 3

√
2) + 3

(

z − π

4

)

= 0 .
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