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Introduction

The chain rule in Calculus I tells us how to differentiate
compositions: functions of the form f (g(x)).

A composition can be thought of as starting with a function f (t)
and then replacing its variable with another function: t = g(x).

We can form compositions of functions of several variables in an
analogous manner, by replacing the given variables with functions
of new variables.

The process of finding the partial derivatives of such compositions
is called the Chain Rule.
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Setup. Suppose we are given a function f (x1, x2, . . . , xn) of n
variables, and we replace each xi with a function xi (t1, t2, . . . , tm)
of new variables t1, t2, . . . , tm.

Question. How are the partial derivatives
∂f

∂xi
and

∂f

∂tj
related?

Let’s begin by looking at a concrete example.

Example 1

If f (x , y) = x2 + y3 and we set x = t sin s, y = t4 + s2, how are
∂f

∂x
,
∂f

∂y
,
∂f

∂s
and

∂f

∂t
related?
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We directly substitute:

f (x , y) = x2 + y3 = t2 sin2 s + (t4 + s2)3

and then compute:

∂f

∂t
= 2t sin2 s + 3(t4 + s2)24t3 = 2t sin s

∂x

∂t
+ 3(t4 + s2)2

∂y

∂t

= 2x
∂x

∂t
+ 3y2

∂y

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
,

∂f

∂s
= 2t2 sin s cos s + 3(t4 + s2)22s = 2t sin s

∂x

∂s
+ 3(t4 + s2)2

∂y

∂s

= 2x
∂x

∂s
+ 3y2

∂y

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s
.
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Tree Diagrams

The chain rule explains the results of the preceding example.

We start by introducing a tree diagram:

Start with a root vertex labelled f .

Below f draw branches to vertices labelled with each of the
original independent variables.

Below each of the each independent variables draw branches
to each of the new independent variables.
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Examples

For instance, if f is a function of x and y , and we make x and y

both functions of r , s and t, we get the tree on the left.

f

x y

r s t r s t

f

x y

r s

z

r s r s

If f is a function of x , y and z , and we make x , y and z all
functions of r and s, we get the tree on the right.
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We label each branch in a given tree diagram with the partial
derivative of the vertex above with respect to the vertex below.

So in the second example above we get the labelling:

f

x y

r s

z

r s r s

∂f
∂x

∂f
∂z

∂x
∂r

∂x
∂s

∂y
∂r

∂y
∂s

∂z
∂r

∂z
∂s

∂f
∂y

To compute the derivative of f with respect to a variable in the
bottom row, we follow every path to that variable, multiplying as
we go, and add the results.
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Continuing with our example, there are three paths (in red) to the
variable r (in blue):

f

x y

r s

z

r s r s

∂f
∂x

∂f
∂z

∂x
∂r

∂x
∂s

∂y
∂r

∂y
∂s

∂z
∂r

∂z
∂s

∂f
∂y

“Multiplying down and adding across” gives the result

∂f

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r
+

∂f

∂z

∂z

∂r
.
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Examples

Example 2

If f (x , y) = x2y3, x = r cos θ and y = r sin θ, use the chain rule to

compute
∂f

∂r
and

∂f

∂θ
.

Solution. We have the following tree diagram:

f

x y

r θ r θ

∂f
∂x

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∂f
∂y

⇒

∂f

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r

= 2xy3 cos θ + 3x2y2 sin θ,

∂f

∂θ
=

∂f

∂x

∂x

∂θ
+

∂f

∂y

∂y

∂θ

= −2xy3r sin θ + 3x2y2r cos θ.
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We now substitute x = r cos θ and y = r sin θ:

∂f

∂r
= 2xy3 cos θ + 3x2y2 sin θ

= 5r4 cos2 θ sin3 θ ,

∂f

∂θ
= −2xy3r sin θ + 3x2y2r cos θ

= r5(−2 cos θ sin4 θ + 3cos3 θ sin2 θ) .
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Example 3

If w = xey/z and x = t2, y = 1− t and z = 1 + 2t, compute
dw

dt
.

Solution. We have the following tree diagram:

w

x y

∂w
∂x ∂w

∂y
z

∂w
∂z

dx
dt

dy
dt

dz
dt

t t t

⇒

dw

dt
=

∂w

∂x

dx

dt
+

∂w

∂y

dy

dt
+

∂w

∂z

dz

dt

= ey/z(2t) +
x

z
ey/z (−1)−

xy

z2
ey/z(2)

= e
1−t
1+2t

(

2t −
t2

1 + 2t
−

2t2(1− t)

(1 + 2t)2

)

= e
1−t
1+2t

(

8t3 + 5t2 + 2t

(1 + 2t)2

)

.
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Example 4

Suppose that g(u, v) = f (eu + sin v , eu + cos v). Given the
following table of values, compute gu(0, 0) and gv (0, 0).

f g fx fy

(0, 0) 3 6 4 8

(1, 2) 6 3 2 5

Solution. We have f = f (x , y) with x = eu + sin v and
y = eu + cos v . This yields the following diagram:

∂x

f=g

x

∂f
∂x

y

∂f
∂x

∂y
∂u

∂y
∂v

∂x
∂v∂u

u u vv

⇒

∂g

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u

∂f

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
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Thus

gu(u, v) = fx(x , y)e
u + fy (x , y)e

u

= fx(e
u + sin v , eu + cos v)eu + fy (e

u + sin v , eu + cos v)eu ,

gv (u, v) = fx(x , y) cos v − fy (x , y) sin v

= fx(e
u + sin v , eu + cos v) cos v − fy (e

u + sin v , eu + cos v) sin v ,

so that, according to the table,

gu(0, 0) = fx(e
0 + sin 0, e0 + cos 0)e0 + fy(e

0 + sin 0, e0 + cos 0)e0

= fx(1, 2) + fy (1, 2) = 2 + 5 = 7 ,

gu(0, 0) = fx(e
0 + sin 0, e0 + cos 0) cos 0− fy (e

0 + sin 0, e0 + cos 0) sin 0

= fx(1, 2) = 2 .
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Example 5

Use the Multivariate Chain Rule to derive the ordinary Product and
Quotient Rules from Calculus I.

Solution. Given f (x) and g(x), let P(u, v) = uv and
Q(u, v) = u/v .

Then P(f (x), g(x)) = f (x)g(x) and Q(f (x), g(x)) = f (x)
g(x) .

The chain rule gives:

du

P

u

∂P
∂u

v

∂P
∂v

dv
dxdx

x x

⇒

d

dx
(f (x)g(x)) =

dP

dx
=

∂P

∂u

du

dx
+

∂P

∂v

dv

dx

= v
df

dx
+ v

dg

dx

= g(x)
df

dx
+ f (x)

dg

dx
.
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Similarly,
d

dx

(

f (x)

g(x)

)

=
dQ

dx
=

∂Q

∂u

du

dx
+

∂Q

∂v

dv

dx

=
1

v

df

dx
−

u

v2
dg

dx

=
1

g(x)

df

dx
−

f (x)

g(x)2
dg

dx

=
g(x)df

dx
− f (x)dg

dx

g(x)2
.
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Implicit Differentiation

Given a differentiable function f (x , y), the Implicit Function

Theorem states that the implicit curve with equation

f (x , y) = 0

defines y as a differentiable function of x at every point where
fy 6= 0.

In Calculus I you learn the process of implicit differentiation for
computing dy

dx
.

If we use the Chain Rule we can derive a much faster procedure
involving the partial derivatives of f .
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Setting y = y(x) and differentiating both sides of f (x , y) = 0 with
respect to x , the chain rule gives:

dx

f

x

∂f
∂x

y

∂f
∂y

dy
dxdx

x x

⇒
0 =

df

dx
=

∂f

∂x

dx

dx
+

∂f

∂y

dy

dx

=
∂f

∂x
+

∂f

∂y

dy

dx

Solving for dy
dx

we obtain

dy

dx
=

−∂f /∂x

∂f /∂y
.
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Example 6

If x3 + x2y + y2x + y3 = 0, find dy
dx
.

Solution. If we set f (x , y) = x3 + x2y + y2x + y3, then according
to the preceding formula,

dy

dx
=

−∂f /∂x

∂f /∂y
=

−(3x2 + 2xy + y2)

x2 + 2xy + 3y2
.
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In a similar way, given a differentiable function F (x , y , z), the
implicit surface defined by

F (x , y , z) = 0

defines z as a function of x and y wherever Fz 6= 0.

Setting z = z(x , y) and applying the Chain Rule we obtain

0 =
∂F

∂x
=

∂F

∂x

∂x

∂x
+

∂F

∂y

∂y

∂x
+

∂F

∂z

∂z

∂x

=
∂F

∂x
+

∂F

∂z

∂z

∂x
.

Hence
∂z

∂x
=

−∂F/∂x

∂F/∂z
.
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Likewise one can show that

∂z

∂y
=

−∂F/∂y

∂F/∂z
.

Example 7

If x2y + y2z + z2x = xyz , find
∂z

∂x
and

∂z

∂y
.

Solution. The given equation is equivalent to

F (x , y , z) = x2y + y2z + z2x − xyz = 0.

Thus
∂z

∂x
=

−∂F/∂x

∂F/∂z
=

−(2xy + z2 − yz)

y2 + 2xz − xy
.
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And
∂z

∂y
=

−∂F/∂y

∂F/∂z
=

−(x2 + 2yz − xz)

y2 + 2xz − xy
.
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