Optimization

Ryan C. Daileda

Trinity University

Calculus III

Definition

- f(x, y) has a *local maximum* at (a, b) if $f(x, y) \le f(a, b)$ for all (x, y) near (a, b).
- f(x, y) has a *local minimum* at (a, b) if $f(x, y) \ge f(a, b)$ for all (x, y) near (a, b).

Example. The function

$$f(x,y) = ((x+y)^3 - x - y)e^{-2x^2 - 2y^2}$$

has two local maxima and two local minima, all situated on the line y = x. See Maple.

Question. How can we identify local extrema of f(x, y)?

Theorem 1

If f(x, y) is differentiable at (a, b) and has a local extremum there, then $\nabla f(a, b) = \mathbf{0}$.

Idea of Proof. If f(x, y) has a local maximum, say, at (a, b) then f has a local maximum as we move in *any* fixed direction **v**.

From Calc. I we know that this means

$$D_{\mathbf{v}}f(a,b) = rac{
abla f(a,b) \cdot \mathbf{v}}{|\mathbf{v}|} = 0 \ \Rightarrow \
abla f(a,b) \cdot \mathbf{v} = 0.$$

This means $\nabla f(a, b)$ is orthogonal to *every* vector **v**. Only $\nabla f(a, b) = \mathbf{0}$ has this property.

Critical Points

Definition

We say that (a, b) is a *critical point* of f(x, y) provided $\nabla f(a, b) = \mathbf{0}$.

Moral. If f(x, y) is differentiable, then its local extrema must occur among its critical points.

To find the critical points of f(x, y), we must solve the *vector* equation

$$\langle f_x(x,y), f_y(x,y) \rangle = \nabla f = \mathbf{0} = \langle 0, 0 \rangle.$$

This is equivalent to the *simultaneous system* of equations

$$f_x(x,y) = 0$$
 and $f_y(x,y) = 0$.

Example 1

Find and classify the critical points of $f(x, y) = 3x - x^3 - 2y^2 + y^4$.

Solution. The critical points are given by

$$f_x = 3 - 3x^2 = 0 \iff x^2 - 1 = 0 \iff (x - 1)(x + 1) = 0,$$

 $f_y = -4y + 4y^3 = 0 \iff y^3 - y = 0 \iff y(y - 1)(y + 1) = 0.$

So we have $x = \pm 1$ and $y = 0, \pm 1$, with no correlation between the two.

So there are *six* critical points:

$$(\pm 1, 0), (\pm 1, 1), (\pm 1, -1).$$

Based on the graph of f we find that it has:

a local maximum at (1,0), local minima at $(-1,\pm 1)$, saddle points at $(1,\pm 1), (-1,0)$.

Question. Is there a way to identify critical points without using the graph of f(x, y)?

Recall. In Calc. I we had the Second Derivative Test, which identified critical points of f(x) based on its concavity.

The Second Derivative Test in Two Variables

By (essentially) considering the concavity of f(x, y) in *every* direction one arrives at the following result.

Theorem 2 (Second Derivative Test)

Suppose that f(x, y) has continuous second order partial derivatives at the point (a, b) and that $\nabla f(a, b) = \mathbf{0}$. Let

$$D = D(a, b) = f_{xx}(a, b)f_{yy}(a, b) - f_{xy}(a, b)^2 = \begin{vmatrix} f_{xx}(a, b) & f_{xy}(a, b) \\ f_{xy}(a, b) & f_{yy}(a, b) \end{vmatrix}$$

Then:

If D > 0 and f_{xx}(a, b) > 0, then f has a local min. at (a, b).
 If D > 0 and f_{xx}(a, b) < 0, then f has a local max. at (a, b).
 If D < 0, then f has a saddle point at (a, b).
 If D = 0, the test fails.

The determinant
$$D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix}$$
 is called the *Hessian* of *f*.

The Second Derivative Test succeeds in classifying a critical point (a, b) precisely when $D \neq 0$.

If D > 0, we can look at *either* of f_{xx} or f_{yy} to determine the concavity of the graph of f.

If D = 0, then we need to do something else entirely to classify (a, b).

Examples

Example 2

Use the Second Derivative Test to classify the critical points $(\pm 1, 0)$, $(\pm 1, 1)$ and $(\pm 1, -1)$ of $f(x, y) = 3x - x^3 - 2y^2 + y^4$.

Solution. We have

1

$$\begin{array}{rl} f_x=3-3x^2 &\Rightarrow f_{xx}=-6x,\\ f_{xy}=0,\\ f_y=-4y+4y^3 &\Rightarrow f_{yy}=-4+12y^2. \end{array}$$

Thus

$$D = f_{xx}f_{yy} - f_{xy}^2 = -6x(12y^2 - 4).$$

So we have the following table:

Point	D	f_{XX}	Туре
$(1,\pm 1)$	< 0	NA	Saddle
$(-1,\pm 1)$	> 0	> 0	Local Min.
(1,0)	> 0	< 0	Local Max.
(-1, 0)	< 0	NA	Saddle

which agrees with our graphical observations.

There are two main difficulties in that arise in the classification of the critical points of f(x, y):

- Finding the critical points requires us to solve a *system* of (often nonlinear) equations in two variables.
- The Second Derivative Test has lots of "moving parts."

Example 3

Find and classify the critical points of $f(x, y) = x^3 - 12xy + 8y^3$.

Solution. To find the critical points we need to solve the system

$$\begin{split} f_x &= 3x^2 - 12y = 0 &\Leftrightarrow x^2 - 4y = 0 &\Leftrightarrow x^2 = 4y, \\ f_y &= -12x + 24y^2 = 0 &\Leftrightarrow -x + 2y^2 = 0 &\Leftrightarrow 2y^2 = x. \end{split}$$

Substituting the second into the first we obtain

$$4y = (2y^2)^2 = 4y^4 \iff y^4 - y = 0 \iff y(y^3 - 1) = 0,$$

which tells us that y = 0, 1.

Since $x = 2y^2$ we find the corresponding values x = 0, 2.

So we have two critical points:

$$(0,0)$$
 and $(2,1)$.

Now we compute the Hessian:

$$\begin{cases} f_{xx} = 6x, \\ f_{xy} = -12, \\ f_{yy} = 48y \end{cases} \Rightarrow D = f_{xx}f_{yy} - f_{xy}^2 = 288xy - 144 = 144(2xy - 1).$$

Therefore:

Point	D	f_{XX}	Туре
(0,0)	< 0	NA	Saddle
(2,1)	> 0	> 0	Local Min.

So what do we do when the Second Derivative Test fails? Whatever we can!

Example 4

Find and classify the critical points of $f(x, y) = x^2 + 4y^2 - 4xy + 2$.

Solution. The critical points are given by

$$\begin{split} f_x &= 2x - 4y = 0 &\Leftrightarrow x - 2y = 0 &\Leftrightarrow x = 2y, \\ f_y &= 8y - 4x = 0 &\Leftrightarrow 2y - x = 0 &\Leftrightarrow x = 2y. \end{split}$$

That is, there are critical points *everywhere* along the line x = 2y.

Since

$$\begin{cases} f_{xx} = 2, \\ f_{xy} = -4, \\ f_{yy} = 8 \end{cases} \Rightarrow D = f_{xx}f_{yy} - f_{xy}^2 = 16 - (-4)^2 = 0,$$

the second derivative test fails at every critical point.

To classify the critical points we instead notice that

$$f(x,y) = x^{2} + 4y^{2} - 4xy + 2 = (x - 2y)^{2} + 2,$$

which shows that $f(x, y) \ge 2$ for all (x, y), and f(x, y) = 2 when x = 2y.

Therefore f has (absolute) minima all along the line x = 2y.