Optimization

Ryan C. Daileda

Trinity University
Calculus III

Local Extrema

Definition

- $f(x, y)$ has a local maximum at (a, b) if $f(x, y) \leq f(a, b)$ for all (x, y) near (a, b).
- $f(x, y)$ has a local minimum at (a, b) if $f(x, y) \geq f(a, b)$ for all (x, y) near (a, b).

Example. The function

$$
f(x, y)=\left((x+y)^{3}-x-y\right) e^{-2 x^{2}-2 y^{2}}
$$

has two local maxima and two local minima, all situated on the line $y=x$. See Maple.

The First Derivative Test in Two Variables

Question. How can we identify local extrema of $f(x, y)$?

Theorem 1

If $f(x, y)$ is differentiable at (a, b) and has a local extremum there, then $\nabla f(a, b)=\mathbf{0}$.

Idea of Proof. If $f(x, y)$ has a local maximum, say, at (a, b) then f has a local maximum as we move in any fixed direction \mathbf{v}.

From Calc. I we know that this means

$$
D_{\mathbf{v}} f(a, b)=\frac{\nabla f(a, b) \cdot \mathbf{v}}{|\mathbf{v}|}=0 \Rightarrow \nabla f(a, b) \cdot \mathbf{v}=0
$$

This means $\nabla f(a, b)$ is orthogonal to every vector v. Only $\nabla f(a, b)=\mathbf{0}$ has this property.

Critical Points

Definition

We say that (a, b) is a critical point of $f(x, y)$ provided $\nabla f(a, b)=\mathbf{0}$.

Moral. If $f(x, y)$ is differentiable, then its local extrema must occur among its critical points.
To find the critical points of $f(x, y)$, we must solve the vector equation

$$
\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle=\nabla f=\mathbf{0}=\langle 0,0\rangle
$$

This is equivalent to the simultaneous system of equations

$$
f_{x}(x, y)=0 \quad \text { and } \quad f_{y}(x, y)=0
$$

Example 1

Find and classify the critical points of $f(x, y)=3 x-x^{3}-2 y^{2}+y^{4}$.

Solution. The critical points are given by

$$
\begin{aligned}
& f_{x}=3-3 x^{2}=0 \Leftrightarrow x^{2}-1=0 \Leftrightarrow(x-1)(x+1)=0 \\
& f_{y}=-4 y+4 y^{3}=0 \Leftrightarrow y^{3}-y=0 \Leftrightarrow y(y-1)(y+1)=0 .
\end{aligned}
$$

So we have $x= \pm 1$ and $y=0, \pm 1$, with no correlation between the two.

So there are six critical points:

$$
(\pm 1,0),(\pm 1,1),(\pm 1,-1)
$$

Based on the graph of f we find that it has:

$$
\begin{aligned}
& \text { a local maximum at }(1,0) \text {, } \\
& \text { local minima at }(-1, \pm 1) \text {, } \\
& \text { saddle points at }(1, \pm 1),(-1,0)
\end{aligned}
$$

Question. Is there a way to identify critical points without using the graph of $f(x, y)$?

Recall. In Calc. I we had the Second Derivative Test, which identified critical points of $f(x)$ based on its concavity.

The Second Derivative Test in Two Variables

By (essentially) considering the concavity of $f(x, y)$ in every direction one arrives at the following result.

Theorem 2 (Second Derivative Test)

Suppose that $f(x, y)$ has continuous second order partial derivatives at the point (a, b) and that $\nabla f(a, b)=\mathbf{0}$. Let
$D=D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}(a, b)^{2}=\left|\begin{array}{ll}f_{x x}(a, b) & f_{x y}(a, b) \\ f_{x y}(a, b) & f_{y y}(a, b)\end{array}\right|$.
Then:

1. If $D>0$ and $f_{x x}(a, b)>0$, then f has a local min. at (a, b).
2. If $D>0$ and $f_{x x}(a, b)<0$, then f has a local max. at (a, b).
3. If $D<0$, then f has a saddle point at (a, b).
4. If $D=0$, the test fails.

Remarks

The determinant $D=\left|\begin{array}{ll}f_{x x} & f_{x y} \\ f_{x y} & f_{y y}\end{array}\right|$ is called the Hessian of f.

The Second Derivative Test succeeds in classifying a critical point (a, b) precisely when $D \neq 0$.

If $D>0$, we can look at either of $f_{x x}$ or $f_{y y}$ to determine the concavity of the graph of f.

If $D=0$, then we need to do something else entirely to classify (a, b).

Examples

Example 2

Use the Second Derivative Test to classify the critical points $(\pm 1,0),(\pm 1,1)$ and $(\pm 1,-1)$ of $f(x, y)=3 x-x^{3}-2 y^{2}+y^{4}$.

Solution. We have

$$
\begin{aligned}
& f_{x}=3-3 x^{2} \Rightarrow f_{x x}=-6 x, \\
& f_{x y}=0, \\
& f_{y}=-4 y+4 y^{3} \Rightarrow f_{y y}=-4+12 y^{2} .
\end{aligned}
$$

Thus

$$
D=f_{x x} f_{y y}-f_{x y}^{2}=-6 x\left(12 y^{2}-4\right)
$$

So we have the following table:

Point	D	$f_{x x}$	Type
$(1, \pm 1)$	<0	NA	Saddle
$(-1, \pm 1)$	>0	>0	Local Min.
$(1,0)$	>0	<0	Local Max.
$(-1,0)$	<0	NA	Saddle

which agrees with our graphical observations.
There are two main difficulties in that arise in the classification of the critical points of $f(x, y)$:

- Finding the critical points requires us to solve a system of (often nonlinear) equations in two variables.
- The Second Derivative Test has lots of "moving parts."

Example 3

Find and classify the critical points of $f(x, y)=x^{3}-12 x y+8 y^{3}$.

Solution. To find the critical points we need to solve the system

$$
\begin{aligned}
& f_{x}=3 x^{2}-12 y=0 \Leftrightarrow x^{2}-4 y=0 \Leftrightarrow x^{2}=4 y \\
& f_{y}=-12 x+24 y^{2}=0 \Leftrightarrow-x+2 y^{2}=0 \Leftrightarrow 2 y^{2}=x .
\end{aligned}
$$

Substituting the second into the first we obtain

$$
4 y=\left(2 y^{2}\right)^{2}=4 y^{4} \Leftrightarrow y^{4}-y=0 \Leftrightarrow y\left(y^{3}-1\right)=0
$$

which tells us that $y=0,1$.
Since $x=2 y^{2}$ we find the corresponding values $x=0,2$.

So we have two critical points:

$$
(0,0) \text { and }(2,1) \text {. }
$$

Now we compute the Hessian:

$$
\left.\begin{array}{r}
f_{x x}=6 x, \\
f_{x y}=-12, \\
f_{y y}=48 y
\end{array}\right\} \Rightarrow D=f_{x x} f_{y y}-f_{x y}^{2}=288 x y-144=144(2 x y-1)
$$

Therefore:

Point	D	$f_{x x}$	Type
$(0,0)$	<0	NA	Saddle
$(2,1)$	>0	>0	Local Min.

So what do we do when the Second Derivative Test fails? Whatever we can!

Example 4

Find and classify the critical points of $f(x, y)=x^{2}+4 y^{2}-4 x y+2$.

Solution. The critical points are given by

$$
\begin{aligned}
& f_{x}=2 x-4 y=0 \Leftrightarrow x-2 y=0 \Leftrightarrow x=2 y \\
& f_{y}=8 y-4 x=0 \Leftrightarrow 2 y-x=0 \Leftrightarrow x=2 y .
\end{aligned}
$$

That is, there are critical points everywhere along the line $x=2 y$.

Since

$$
\left.\begin{array}{c}
f_{x x}=2 \\
f_{x y}=-4 \\
f_{y y}=8
\end{array}\right\} \Rightarrow D=f_{x x} f_{y y}-f_{x y}^{2}=16-(-4)^{2}=0
$$

the second derivative test fails at every critical point.
To classify the critical points we instead notice that

$$
f(x, y)=x^{2}+4 y^{2}-4 x y+2=(x-2 y)^{2}+2
$$

which shows that $f(x, y) \geq 2$ for all (x, y), and $f(x, y)=2$ when $x=2 y$.

Therefore f has (absolute) minima all along the line $x=2 y$.

