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Local Extrema

Definition

f (x , y) has a local maximum at (a, b) if f (x , y) ≤ f (a, b) for
all (x , y) near (a, b).

f (x , y) has a local minimum at (a, b) if f (x , y) ≥ f (a, b) for
all (x , y) near (a, b).

Example. The function

f (x , y) = ((x + y)3 − x − y)e−2x2−2y2

has two local maxima and two local minima, all situated on the
line y = x . See Maple.
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The First Derivative Test in Two Variables

Question. How can we identify local extrema of f (x , y)?

Theorem 1

If f (x , y) is differentiable at (a, b) and has a local extremum there,

then ∇f (a, b) = 0.

Idea of Proof. If f (x , y) has a local maximum, say, at (a, b) then f

has a local maximum as we move in any fixed direction v.

From Calc. I we know that this means

Dvf (a, b) =
∇f (a, b) · v

|v|
= 0 ⇒ ∇f (a, b) · v = 0.

This means ∇f (a, b) is orthogonal to every vector v. Only
∇f (a, b) = 0 has this property.
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Critical Points

Definition

We say that (a, b) is a critical point of f (x , y) provided
∇f (a, b) = 0.

Moral. If f (x , y) is differentiable, then its local extrema must
occur among its critical points.

To find the critical points of f (x , y), we must solve the vector

equation

〈fx(x , y), fy (x , y)〉 = ∇f = 0 = 〈0, 0〉.

This is equivalent to the simultaneous system of equations

fx(x , y) = 0 and fy (x , y) = 0.
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Example 1

Find and classify the critical points of f (x , y) = 3x − x3−2y2+ y4.

Solution. The critical points are given by

fx = 3− 3x2 = 0 ⇔ x2 − 1 = 0 ⇔ (x − 1)(x + 1) = 0,

fy = − 4y + 4y3 = 0 ⇔ y3 − y = 0 ⇔ y(y − 1)(y + 1) = 0.

So we have x = ±1 and y = 0,±1, with no correlation between
the two.

So there are six critical points:

(±1, 0), (±1, 1), (±1,−1).

Daileda Optimization



Based on the graph of f we find that it has:

a local maximum at (1, 0),

local minima at (−1,±1),

saddle points at (1,±1), (−1, 0).

Question. Is there a way to identify critical points without using
the graph of f (x , y)?

Recall. In Calc. I we had the Second Derivative Test, which
identified critical points of f (x) based on its concavity.
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The Second Derivative Test in Two Variables

By (essentially) considering the concavity of f (x , y) in every

direction one arrives at the following result.

Theorem 2 (Second Derivative Test)

Suppose that f (x , y) has continuous second order partial

derivatives at the point (a, b) and that ∇f (a, b) = 0. Let

D = D(a, b) = fxx(a, b)fyy (a, b)−fxy(a, b)
2 =
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∣

∣

∣

.

Then:

1. If D > 0 and fxx(a, b) > 0, then f has a local min. at (a, b).

2. If D > 0 and fxx(a, b) < 0, then f has a local max. at (a, b).

3. If D < 0, then f has a saddle point at (a, b).

4. If D = 0, the test fails.
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Remarks

The determinant D =

∣

∣
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∣

fxx fxy
fxy fyy

∣

∣

∣

∣

is called the Hessian of f .

The Second Derivative Test succeeds in classifying a critical point
(a, b) precisely when D 6= 0.

If D > 0, we can look at either of fxx or fyy to determine the
concavity of the graph of f .

If D = 0, then we need to do something else entirely to classify
(a, b).
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Examples

Example 2

Use the Second Derivative Test to classify the critical points
(±1, 0), (±1, 1) and (±1,−1) of f (x , y) = 3x − x3 − 2y2 + y4.

Solution. We have

fx = 3− 3x2 ⇒ fxx = −6x ,

fxy = 0,

fy = −4y + 4y3 ⇒ fyy = −4 + 12y2.

Thus
D = fxx fyy − f 2

xy
= − 6x(12y2 − 4).
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So we have the following table:

Point D fxx Type

(1,±1) < 0 NA Saddle

(−1,±1) > 0 > 0 Local Min.

(1, 0) > 0 < 0 Local Max.

(−1, 0) < 0 NA Saddle

which agrees with our graphical observations.

There are two main difficulties in that arise in the classification of
the critical points of f (x , y):

Finding the critical points requires us to solve a system of
(often nonlinear) equations in two variables.

The Second Derivative Test has lots of “moving parts.”
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Example 3

Find and classify the critical points of f (x , y) = x3 − 12xy + 8y3.

Solution. To find the critical points we need to solve the system

fx = 3x2 − 12y = 0 ⇔ x2 − 4y = 0 ⇔ x2 = 4y ,

fy = − 12x + 24y2 = 0 ⇔ −x + 2y2 = 0 ⇔ 2y2 = x .

Substituting the second into the first we obtain

4y = (2y2)2 = 4y4 ⇔ y4 − y = 0 ⇔ y(y3 − 1) = 0,

which tells us that y = 0, 1.

Since x = 2y2 we find the corresponding values x = 0, 2.
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So we have two critical points:

(0, 0) and (2, 1).

Now we compute the Hessian:

fxx = 6x ,
fxy = −12,
fyy = 48y







⇒ D = fxx fyy−f 2
xy

= 288xy−144 = 144(2xy−1).

Therefore:

Point D fxx Type

(0, 0) < 0 NA Saddle

(2, 1) > 0 > 0 Local Min.
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So what do we do when the Second Derivative Test fails?
Whatever we can!

Example 4

Find and classify the critical points of f (x , y) = x2+4y2− 4xy +2.

Solution. The critical points are given by

fx = 2x − 4y = 0 ⇔ x − 2y = 0 ⇔ x = 2y ,

fy = 8y − 4x = 0 ⇔ 2y − x = 0 ⇔ x = 2y .

That is, there are critical points everywhere along the line x = 2y .
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Since

fxx = 2,
fxy = −4,
fyy = 8







⇒ D = fxx fyy − f 2
xy

= 16− (−4)2 = 0,

the second derivative test fails at every critical point.

To classify the critical points we instead notice that

f (x , y) = x2 + 4y2 − 4xy + 2 = (x − 2y)2 + 2,

which shows that f (x , y) ≥ 2 for all (x , y), and f (x , y) = 2 when
x = 2y .

Therefore f has (absolute) minima all along the line x = 2y .
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