Absolute/Global Extrema

Ryan C. Daileda

Trinity University
Calculus III

Global Extrema

Definition

Given $f(x, y)$ with domain $D \subset \mathbb{R}^{2}$, we say:

- f has an absolute/global maximum at $(a, b) \in D$ if $f(a, b) \geq f(x, y)$ for all $(x, y) \in D$.
- f has an absolute/global minimum at $(a, b) \in D$ if $f(a, b) \leq f(x, y)$ for all $(x, y) \in D$.

Remark. The existence of global extrema depends as much on $f(x, y)$ as it does on D.

Example

Consider the function $f(x, y)=\sqrt{x^{2}+y^{2}}$ (the distance from $(0,0)$ to $(x, y))$.

1. If $D=\mathbb{R}^{2}$, then:

- f has a global minimum at $(0,0)$;
- f has no global maximum.

2. If $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$ (the unit disk), then:

- f has a global minimum at $(0,0)$;
- f has global maxima all along $x^{2}+y^{2}=1$.

3. If $D=\left\{(x, y) \mid 1<x^{2}+y^{2}<4\right\}$, then f does not have any global extrema.

We would like conditions on $f(x, y)$ and its domain D that guarantee the existence of global extrema.

Recall. The Extreme Value Theorem in Calc. I states that if $f(x)$ is continuous on the closed interval $[a, b]$, then f has global extrema there.

We have already discussed continuity in multiple variables.

Question. What is the analogue of a closed interval in \mathbb{R}^{2} ?

Compact Sets

Definition

A set $D \subset R^{2}$ is:

- bounded if it can be enclosed in a circle;
- closed if it includes its boundary (denoted by ∂D); We say D is compact if it is both closed and bounded.

Examples.

Bounded, not closed

Closed, not bounded

Compact subsets of \mathbb{R}^{2} will play the role that closed intervals in \mathbb{R} play in Calculus I.

We can now state our main result.

Theorem 1 (Extreme Value Theorem)

If $f(x, y)$ is continuous on a compact set $D \subset \mathbb{R}^{2}$, then f has global extrema there.

The EVT guarantees the existence of global extrema, but how do we find them?

Theorem 2

If $f(x, y)$ is differentiable on a compact set $D \subset \mathbb{R}^{2}$, then the extrema of f must occur:

- At critical points within D; OR
- On the boundary ∂D.

Recall that if $f(x)$ is differentiable on $[a, b]$, then the extrema of f occur:

- At the critical points of f in (a, b); OR
- At $x=a$ or $x=b$ (the boundary points).

This yields the following one variable optimization procedure:

1. Find the critical points of f in (a, b).
2. Includes the boundary points $x=a$ and $x=b$.
3. Compare values.

2D Optimization

We have the following analogous optimization procedure for $f(x, y)$ on a compact domain D :

1. Find the critical points of f in D.
2. Find the extrema of f on ∂D.
3. Compare values.

The "new" step here is finding the extrema along the boundary.
For now we will proceed by ad hoc means, finding some way to reduce to a single variable optimization problem.

Example 1

Find the global extrema of $f(x, y)=x^{3}+4 y^{2}-3 x$ on the closed disk $x^{2}+y^{2} \leq 2$.

Solution. Because the domain is compact and f is continuous, the EVT guarantees the existence of global extrema.

Critical Points. We set

$$
\begin{aligned}
& f_{x}=3 x^{2}-3=0 \Rightarrow x= \pm 1 \\
& f_{y}=8 y=0 \Rightarrow y=0
\end{aligned}
$$

which yields the two critical points $(\pm 1,0)$, both of which are in our domain.

Boundary. The boundary of the disk is the circle $x^{2}+y^{2}=2$, centered at the origin, with radius $\sqrt{2}$.

Since $y^{2}=2-x^{2}$ on the boundary, we find that

$$
\begin{aligned}
f(x, y) & =x^{3}+4 y^{2}-3 x \\
& =x^{3}+4\left(2-x^{2}\right)-3 x \\
& =x^{3}-4 x^{2}-3 x+8=g(x)
\end{aligned}
$$

And as we move along the circle, x varies from $-\sqrt{2}$ to $\sqrt{2}$.

So we need to optimize $g(x)$ on $[-\sqrt{2}, \sqrt{2}]$.

First we find the critical points of g :

$$
g^{\prime}(x)=3 x^{2}-8 x-3=(3 x+1)(x-3)=0 \Rightarrow x=3,-1 / 3
$$

Only $x=-1 / 3$ is in the interval $[-\sqrt{2}, \sqrt{2}]$.
Now we evaluate g at the one critical point and the endpoints:

x	$g(x)$
$-1 / 3$	$230 / 27 \approx 8.5$
$\sqrt{2}$	$-\sqrt{2} \approx-1.4$
$-\sqrt{2}$	$\sqrt{2} \approx 1.4$

And we compare to the values of f at its critical points:

$$
\begin{array}{c|c}
(x, y) & f(x, y) \\
\hline(1,0) & -2 \\
(-1,0) & 2
\end{array}
$$

We conclude that f has the absolute maximum value

$$
f\left(-\frac{1}{3}, \pm \frac{\sqrt{17}}{3}\right)=\frac{230}{27}
$$

on the boundary, and has the absolute minimum value

$$
f(1,0)=-2
$$

in the interior.

Remark. We found the y-coordinates of the boundary points by using the relationship $x^{2}+y^{2}=2$.

Example 2

A rectangular box has three faces in the coordinate planes and one vertex on the plane $x+2 y+3 z=6$, as shown below. Find the largest possible volume of such a box.

Solution. Let (x, y, z) be the coordinates of the vertex on the plane.

The volume of the box is then

$$
\begin{aligned}
V & =x y z=(6-2 y-3 z) y z \\
& =6 y z-2 y^{2} z-3 y z^{2}
\end{aligned}
$$

To find the domain of V we project the portion of the plane $x+2 y+3 z=6$ that lies in the first octant onto the $y z$-plane.

This results in the triangular region shown below:

Along the boundary we have

$$
V=(6-2 y-3 z) y z=0 .
$$

So the maximum of V must occur at a critical point in the interior.

The critical points of V are given by

$$
\begin{aligned}
& V_{y}=6 z-4 y z-3 z^{2}=z(6-4 y-3 z)=0 \\
& V_{z}=6 y-2 y^{2}-6 y z=2 y(3-y-3 z)=0
\end{aligned}
$$

On the interior of the domain $y, z \neq 0$. Thus we must have

$$
\left.\begin{array}{c}
6-4 y-3 z=0 \\
3-y-3 z=0
\end{array}\right\} \Rightarrow y=1, \quad z=2 / 3
$$

Since there is only one critical point, it immediately follows that the maximum volume is

$$
V(1,2 / 3)=\left(6-2 \cdot 1-3 \cdot \frac{2}{3}\right) \cdot 1 \cdot \frac{2}{3}=\frac{4}{3}
$$

Remark. The dimensions of the box can be found using the relationship $x+2 y+3 z=6$. They are $2 \times 1 \times 2 / 3$.

Example 3

Find the global extrema of $f(x, y)=16 x y^{2}+8 x y-15 x+16 x^{2}$ on the set $D=\{(x, y):|x| \leq 1,|y| \leq 1\}$.

Solution. The set D is the square bounded by the four lines $x= \pm 1$ and $y= \pm 1$.

Since D is compact and f is continuous, the EVT guarantees the existence of global extrema.

Critical Points. We set

$$
\begin{aligned}
& f_{x}=16 y^{2}+8 y-15+32 x=0 \\
& f_{y}=32 x y+8 x=8 x(4 y+1)=0
\end{aligned}
$$

The second equation implies that $x=0$ or $y=-1 / 4$.
$\underline{x=0}$: In this case the first equation becomes

$$
16 y^{2}+8 y-15=0 \Leftrightarrow(4 y-3)(4 y+5)=0 \Leftrightarrow y=-5 / 4,3 / 4
$$

This yields the critical points $(0,3 / 4)$ and $(0,-5 / 4)$, only the first of which is in D.
$\underline{y=-1 / 4: ~ I n ~ t h i s ~ c a s e ~ t h e ~ f i r s t ~ e q u a t i o n ~ b e c o m e s ~}$

$$
1-2-15+32 x=0 \Leftrightarrow 32 x=16 \Leftrightarrow x=1 / 2
$$

This yields the critical point $(1 / 2,-1 / 4)$, which is in D.

Boundary. Now we optimize f on each of the edges.

Top: This is given by $y=1,-1 \leq x \leq 1$. Here

$$
f(x, y)=f(x, 1)=9 x+16 x^{2}
$$

Applying the usual Calc. I optimization procedure on the interval we find:

$$
\begin{aligned}
& \max . \text { is } f(1,1)=25 \\
& \min . \text { is } f\left(-\frac{9}{32}, 1\right)=-\frac{81}{64}
\end{aligned}
$$

Bottom: This is given by $y=-1,-1 \leq x \leq 1$. Here

$$
f(x, y)=f(x,-1)=-7 x+16 x^{2}
$$

and

$$
\begin{aligned}
& \max . \text { is } f(-1,-1)=23 \\
& \min . \text { is } f\left(\frac{7}{32},-1\right)=-\frac{49}{64}
\end{aligned}
$$

$\underline{\text { Right Side: }}$ This is given by $x=1,-1 \leq y \leq 1$. Here

$$
f(x, y)=f(1, y)=16 y^{2}+8 y+1
$$

and

$$
\begin{aligned}
& \max . \text { is } f(1,1)=25, \\
& \min . \text { is } f\left(1,-\frac{1}{4}\right)=0
\end{aligned}
$$

Left Side: This is given by $x=-1,-1 \leq y \leq 1$. Here

$$
f(x, y)=f(-1, y)=-16 y^{2}-8 y+31
$$

and

$$
\begin{aligned}
& \max . \text { is } f\left(-1,-\frac{1}{4}\right)=32 \\
& \min . \text { is } f(-1,1)=7
\end{aligned}
$$

Taking into account the values at the critical points, which are

$$
f(0,3 / 4)=0 \quad \text { and } \quad f(1 / 2,-1 / 4)=-4
$$

we find that:
Absolute Maximum Value is $f(-1,-1 / 4)=32$,
Absolute Minimum Value is $f(1 / 2,-1 / 4)=-4$.

Graph of $f(x, y)$

y
Daileda
Global Extrema

