Absolute/Global Extrema

Ryan C. Daileda

Trinity University

Calculus III

Definition

Given f(x, y) with domain $D \subset \mathbb{R}^2$, we say:

- f has an *absolute/global maximum* at $(a, b) \in D$ if $f(a, b) \ge f(x, y)$ for all $(x, y) \in D$.
- f has an absolute/global minimum at $(a, b) \in D$ if $f(a, b) \leq f(x, y)$ for all $(x, y) \in D$.

Remark. The existence of global extrema depends as much on f(x, y) as it does on D.

Example

Consider the function $f(x, y) = \sqrt{x^2 + y^2}$ (the distance from (0,0) to (x, y)).

- **1.** If $D = \mathbb{R}^2$, then:
 - f has a global minimum at (0,0);
 - f has no global maximum.

2. If $D = \{(x, y) | x^2 + y^2 \le 1\}$ (the unit disk), then:

- f has a global minimum at (0,0);
- f has global maxima all along $x^2 + y^2 = 1$.

3. If $D = \{(x, y) | 1 < x^2 + y^2 < 4\}$, then f does not have any global extrema.

We would like conditions on f(x, y) and its domain D that guarantee the existence of global extrema.

Recall. The *Extreme Value Theorem* in Calc. I states that if f(x) is *continuous* on the *closed interval* [a, b], then f has global extrema there.

We have already discussed continuity in multiple variables.

Question. What is the analogue of a closed interval in \mathbb{R}^2 ?

Compact Sets

Definition

A set $D \subset R^2$ is:

- bounded if it can be enclosed in a circle;
- *closed* if it includes its boundary (denoted by ∂D);

We say *D* is *compact* if it is both closed and bounded.

Examples.

Compact subsets of \mathbb{R}^2 will play the role that closed intervals in \mathbb{R} play in Calculus I.

We can now state our main result.

Theorem 1 (Extreme Value Theorem)

If f(x, y) is continuous on a compact set $D \subset \mathbb{R}^2$, then f has global extrema there.

The EVT guarantees the existence of global extrema, but how do we find them?

Theorem 2

If f(x, y) is differentiable on a compact set $D \subset \mathbb{R}^2$, then the extrema of f must occur:

- At critical points within D; OR
- On the boundary ∂D .

Recall that if f(x) is differentiable on [a, b], then the extrema of f occur:

- At the critical points of f in (a, b); OR
- At x = a or x = b (the *boundary* points).

This yields the following one variable optimization procedure:

- **1.** Find the critical points of f in (a, b).
- **2.** Includes the boundary points x = a and x = b.
- 3. Compare values.

We have the following analogous optimization procedure for f(x, y) on a compact domain D:

1. Find the critical points of f in D.

- **2.** Find the extrema of f on ∂D .
- **3.** Compare values.

The "new" step here is finding the extrema along the boundary.

For now we will proceed by ad hoc means, finding *some* way to reduce to a single variable optimization problem.

Example 1

Find the global extrema of $f(x, y) = x^3 + 4y^2 - 3x$ on the closed disk $x^2 + y^2 \le 2$.

Solution. Because the domain is compact and f is continuous, the EVT guarantees the existence of global extrema.

Critical Points. We set

$$f_x = 3x^2 - 3 = 0 \quad \Rightarrow \quad x = \pm 1,$$

$$f_y = 8y = 0 \quad \Rightarrow \quad y = 0,$$

which yields the two critical points $(\pm 1, 0)$, both of which are in our domain.

Boundary. The boundary of the disk is the circle $x^2 + y^2 = 2$, centered at the origin, with radius $\sqrt{2}$.

Since $y^2 = 2 - x^2$ on the boundary, we find that

$$f(x,y) = x^{3} + 4y^{2} - 3x$$

= $x^{3} + 4(2 - x^{2}) - 3x$
= $x^{3} - 4x^{2} - 3x + 8 = g(x)$.

And as we move along the circle, x varies from $-\sqrt{2}$ to $\sqrt{2}$.

So we need to optimize g(x) on $[-\sqrt{2}, \sqrt{2}]$.

First we find the critical points of g:

$$g'(x) = 3x^2 - 8x - 3 = (3x + 1)(x - 3) = 0 \Rightarrow x = 3, -1/3.$$

Only x = -1/3 is in the interval $\left[-\sqrt{2}, \sqrt{2}\right]$.

Now we evaluate g at the one critical point *and* the endpoints:

$$\begin{array}{c|c} x & g(x) \\ \hline -1/3 & 230/27 \approx 8.5 \\ \sqrt{2} & -\sqrt{2} \approx -1.4 \\ -\sqrt{2} & \sqrt{2} \approx 1.4 \end{array}$$

And we compare to the values of f at its critical points:

$$\begin{array}{c|c} (x,y) & f(x,y) \\ \hline (1,0) & -2 \\ (-1,0) & 2 \end{array}$$

We conclude that f has the absolute maximum value

$$f\left(-\frac{1}{3},\pm\frac{\sqrt{17}}{3}\right) = \frac{230}{27}$$

on the boundary, and has the absolute minimum value

$$f(1,0)=-2$$

in the interior.

Remark. We found the *y*-coordinates of the boundary points by using the relationship $x^2 + y^2 = 2$.

Example 2

A rectangular box has three faces in the coordinate planes and one vertex on the plane x + 2y + 3z = 6, as shown below. Find the largest possible volume of such a box.

Solution. Let (x, y, z) be the coordinates of the vertex on the plane.

The volume of the box is then

$$V = xyz = (6 - 2y - 3z)yz$$
$$= 6yz - 2y^2z - 3yz^2$$

To find the domain of V we project the portion of the plane x + 2y + 3z = 6 that lies in the first octant onto the yz-plane.

This results in the triangular region shown below:

So the maximum of V must occur at a critical point in the interior.

The critical points of V are given by

$$V_y = 6z - 4yz - 3z^2 = z(6 - 4y - 3z) = 0,$$

$$V_z = 6y - 2y^2 - 6yz = 2y(3 - y - 3z) = 0.$$

On the interior of the domain $y, z \neq 0$. Thus we must have

$$\begin{cases} 6 - 4y - 3z = 0 \\ 3 - y - 3z = 0 \end{cases} \Rightarrow y = 1, z = 2/3.$$

Since there is only one critical point, it immediately follows that the maximum volume is

$$V(1,2/3) = (6-2\cdot 1-3\cdot \frac{2}{3})\cdot 1\cdot \frac{2}{3} = \frac{4}{3}.$$

Remark. The dimensions of the box can be found using the relationship x + 2y + 3z = 6. They are $2 \times 1 \times 2/3$.

Example 3

Find the global extrema of $f(x, y) = 16xy^2 + 8xy - 15x + 16x^2$ on the set $D = \{(x, y) : |x| \le 1, |y| \le 1\}$.

Solution. The set D is the square bounded by the four lines $x = \pm 1$ and $y = \pm 1$.

Since D is compact and f is continuous, the EVT guarantees the existence of global extrema.

Critical Points. We set

$$f_x = 16y^2 + 8y - 15 + 32x = 0,$$

$$f_y = 32xy + 8x = 8x(4y + 1) = 0.$$

The second equation implies that x = 0 or y = -1/4.

x = 0: In this case the first equation becomes

 $16y^2 + 8y - 15 = 0 \iff (4y - 3)(4y + 5) = 0 \iff y = -5/4, 3/4.$

This yields the critical points (0, 3/4) and (0, -5/4), only the first of which is in *D*.

<u>y = -1/4</u>: In this case the first equation becomes $1 - 2 - 15 + 32x = 0 \iff 32x = 16 \iff x = 1/2.$

This yields the critical point (1/2, -1/4), which is in D.

Boundary. Now we optimize *f* on each of the edges.

Top: This is given by $y = 1, -1 \le x \le 1$. Here

$$f(x, y) = f(x, 1) = 9x + 16x^2.$$

Applying the usual Calc. I optimization procedure on the interval we find:

max. is
$$f(1, 1) = 25$$
,
min. is $f\left(-\frac{9}{32}, 1\right) = -\frac{81}{64}$

<u>Bottom</u>: This is given by y = -1, $-1 \le x \le 1$. Here

$$f(x,y) = f(x,-1) = -7x + 16x^2$$

 and

max. is
$$f(-1, -1) = 23$$
,
min. is $f\left(\frac{7}{32}, -1\right) = -\frac{49}{64}$.

<u>Right Side</u>: This is given by $x = 1, -1 \le y \le 1$. Here

$$f(x,y) = f(1,y) = 16y^2 + 8y + 1,$$

and

max. is
$$f(1, 1) = 25$$
,
min. is $f\left(1, -\frac{1}{4}\right) = 0$.

<u>Left Side</u>: This is given by x = -1, $-1 \le y \le 1$. Here

$$f(x, y) = f(-1, y) = -16y^2 - 8y + 31,$$

and

max. is
$$f(-1, -\frac{1}{4}) = 32$$
,
min. is $f(-1, 1) = 7$.

Taking into account the values at the critical points, which are

$$f(0,3/4) = 0$$
 and $f(1/2,-1/4) = -4$,

we find that:

Absolute Maximum Value is f(-1, -1/4) = 32, Absolute Minimum Value is f(1/2, -1/4) = -4.

Graph of f(x, y)

