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Recall

To find the extrema of a differentiable function f (x , y) on a
compact domain D ⊂ R

2:

1. Determine the critical points of f inside D.

2. Determine the extrema of f on the boundary ∂D.

3. Compare the values of f at the points found in 1 and 2.

Step 2 can be quite challenging.

However, if ∂D is given by an equation, we can appeal to the
Method of Lagrange Multipliers.
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Motivating Example

Example 1

Find the global extrema of f (x , y) = x2 + xy + y2 on the circle
x2 + y2 = 4.

See Maple diagram.

Solution 1. On the circle we have y = ±
√
4− x2, −2 ≤ x ≤ 2.

So we need to optimize the pair of functions

f (x ,±
√

4− x2) = x2 ± x
√

4− x2 + (4− x2) = 4± x
√

4− x2

on the closed interval [−2, 2].
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The product and chain rules give

d

dx

(

4± x
√

4− x2
)

= ±
(
√

4− x2 − x2√
4− x2

)

= ± 4− 2x2√
4− x2

which vanishes iff x = ±
√
2.

We then have the table of values

x 4± x
√
4− x2

±
√
2 2, 6

±2 4

We find that the absolute maximum value is 6 and the absolute
minimum is 2.
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Solution 2. The circle can be parametrized by

x = 2cos θ,

y = 2 sin θ,

with 0 ≤ θ ≤ 2π.

Substitution yields

f (2 cos θ, 2 sin θ) = 4 cos2 θ + 4cos θ sin θ + 4 sin2 θ

= 4(1 + cos θ sin θ) = g(θ).

To find the critical points we set

g ′(θ) = 4(cos2 θ − sin2 θ) = 4 cos 2θ = 0,

and find that θ = π/4, 3π/4, 5π/4, 7π/4.
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Including the endpoint(s) we get the table of values

θ 4(1 + cos θ sin θ)

π/4, 5π/4 6
3π/4, 7π/4 2

0, 2π 4

Again we find the absolute maximum and minimum values of 6
and 2 (resp.).

Remark. Note that the extreme values occur at the four “corners”
of the circle x2 + y2 = 4.
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A Better Idea

Solution 3. Let’s look at a contour plot of f (x , y) and superimpose
the circle x2 + y2 = 4.
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If v is tangent to the circle x2 + y2 = 4, the extrema of f (x , y)
must occur where

0 = Dvf =
∇f · v
|v| ⇐⇒ ∇f is orth. to v

⇐⇒ ∇f is normal to x2 + y2
︸ ︷︷ ︸

g(x ,y)

= 4

⇐⇒ ∇f is parallel to ∇g

⇐⇒ ∇f = λ∇g

for some scalar λ. That is,

〈2x + y , x + 2y〉 = λ〈2x , 2y〉.
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This gives us the system of three equations

2x + y = 2λx ,

x + 2y = 2λy ,

x2 + y2 = 4,

in the three unknowns x , y and λ.

The Lagrange Multiplier λ is an auxiliary quantity, so we eliminate
it.

Multiply the first equation by y and the second by x to get

2xy + y2 = 2λxy
x2 + 2xy = 2λxy

}

⇒ 2xy + y2 = x2 + 2xy ⇒ x2 = y2.
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Plugging this into the third equation (the constraint) gives

2x2 = 4 ⇒ x2 = 2 ⇒ x = ±
√
2.

Since x2 = y2, we get y = ±
√
2, with no correlation between the

signs.

So we have 4 Lagrange points: (±
√
2,
√
2), (±

√
2,−

√
2). And the

extrema must occur here.

Finally, we construct a table of values:

(x , y) x2 + xy + y2

(
√
2,
√
2) 6

(
√
2,−

√
2) 2

(−
√
2,
√
2) 2

(−
√
2,−

√
2) 6

⇒ Abs. Max. Value is 6,
Abs. Min. Value is 2.
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Constrained Optimization

Let’s take a look at the general situation.

Suppose that f (x , y) and g(x , y) are differentiable and that
∇g 6= 0 along the contour g(x , y) = k .

We would like to optimize f (x , y) subject to the constraint
g(x , y) = k .

The Implicit Function Theorem implies that the equation
g(x , y) = k defines y as a differentiable function of x (or vice
versa).

This allows us to reduce to a single variable problem.
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For convenience, assume y = y(x).

Recall that along g(x , y) = k the chain rule yields

dy

dx
=

−∂g/∂x

∂g/∂y
.

So we have f (x , y) = f (x , y(x)). The critical points of this
function occur where

0 =
d

dx
f (x , y(x)) =

∂f

∂x

dx

dx
+

∂f

∂y

dy

dx
=

∂f

∂x
− ∂f

∂y

∂g/∂x

∂g/∂y

Multiplying through by ∂g/∂y this becomes

0 =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
= fxgy − fygx =

∣
∣
∣
∣

fx fy
gx gy

∣
∣
∣
∣
= ∇f ×∇g ,
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The Method of Lagrange Multipliers

This means that ∇f and ∇g are parallel, i.e. ∇f = λ∇g for some
scalar λ. This proves:

Theorem 1

Suppose f (x , y) and g(x , y) are differentiable and that ∇g 6= 0

along the contour g(x , y) = k. The extrema of f (x , y) subject to
the constraint g(x , y) = k (if they exist) must occur where
∇f = λ∇g.

Remarks.

We will call the points where ∇f = λ∇g the Lagrange points
of the constrained optimization problem.

The quantity λ is a Lagrange multiplier. In practical
applications it has meaningful interpretations.
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More Remarks

If f and g are differentiable functions of n of variables, and
∇g 6= 0 along the level set g = k (an (n − 1)-dimensional
manifold), a similar argument shows that the extrema of f
subject to g = k must occur where ∇f = λ∇g .

By equating components, the vector equation ∇f = λ∇g
yields n ordinary equations in n + 1 variables.

Therefore the Lagrange system

∇f = λ∇g ,

g = k ,

amounts to n + 1 equations in n+ 1 unknowns.
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We will not utilize λ, so our goal is primarily to eliminate it.

In 2 and 3 variables this is easily achieved by replacing
∇f = λ∇g with the equivalent equation ∇f ×∇g = 0.

Example 2

Find the global extrema of f (x , y) = 2x2 + y2 subject to the
constraint x2 + xy + y2 = 2.

Solution. f (x , y) is continuous and g(x , y) = x2 + xy + y2 = 2
represents an ellipse, which is compact.

The EVT guarantees that f has global extrema subject to the
constraint g = 2.

Daileda Lagrange Multipliers



The Lagrange equations are

∇f ×∇g =

∣
∣
∣
∣

fx fy
gx gy

∣
∣
∣
∣
= fxgy − fygx

= 4x(x + 2y)− 2y(2x + y)

= 4x2 + 4xy − 2y2 = 0,

x2 + xy + y2 = 2.

If we multiply the second equation by 4 and subtract it from the
first we obtain

−6y2 = −8 ⇒ y2 =
4

3
⇒ y = ±2

√
3

3
.
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Substituting y = ±2
√
3/3 back into x2 + xy + y2 = 2 gives us

x = ±
(

1±
√
3

3

)

,

with no correlation between the signs.

This means we have 4 Lagrange points with the following values:

(x , y) 2x2 + y2
(

∓
(

1 +
√
3
3

)

,±2
√
3

3

)

4 + 4
√
3

3
(

±
(

1−
√
3
3

)

,±2
√
3

3

)

4− 4
√
3

3

So the absolute maximum value is 4 + 4
√
3/3 ≈ 6.309 and the

absolute minimum value is 4− 4
√
3/3 ≈ 1.691.
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More Examples

Example 3

Find the global extrema of f (x , y , z) = 2x + 6y + 10z on the
sphere x2 + y2 + z2 = 35.

Solution. Since f is continuous and the sphere
g(x , y , z) = x2 + y2 + z2 = 35 is compact, the EVT guarantees
global extrema exist.

The Lagrange system is

2 = 2λx ,

6 = 2λy ,

10 = 2λz ,

35 = x2 + y2 + z2.
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Since λ 6= 0 (why?), we can solve the first three equations for 1/λ:

1

λ
= x =

y

3
=

z

5
⇒ y = 3x and z = 5x .

Plugging these into the sphere’s equation we get

35 = x2 + y2 + z2 = x2 + (3x)2 + (5x)2 = 35x2 ⇒ x = ±1.

We therefore have two Lagrange points with values:

(x , y , z) 2x + 6y + 10z

(1, 3, 5) 70
(−1,−3,−5) −70

⇒ Abs. Max. Value is 70,
Abs. Min. Value is -70.
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Example 4

Recall the problem of maximizing the volume V = xyz of a box
with one vertex on the plane x + 2y + 3z = 6. Use Lagrange
multipliers to find the maximum volume.

Solution. With g(x , y , z) = x + 2y + 3z the Lagrange system is

yz = λ,

xz = 2λ,

xy = 3λ,

6 = x + 2y + 3z ,

which means that
λ = yz =

xz

2
=

xy

3
.
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If x = 0, y = 0 or z = 0, then V = 0, which is not the maximum
volume.

So we can divide by x , y , z to obtain

y =
x

2
and z =

x

3
.

Plugging into x + 2y + 3z = 6 gives us

6 = x + 2
(x

2

)

+ 3
(x

3

)

= 3x ⇒ x = 2 ⇒ y = 1 and z =
2

3
.

So the optimal dimensions are 2× 1× 2/3, with volume
V = 4/3.

Daileda Lagrange Multipliers



Multiple Constraints

Suppose we are asked to optimize f (x , y , z) subject to the two
constraint equations g(x , y , z) = k and h(x , y , z) = ℓ.

The intersection of the level surfaces g(x , y , z) = k and
h(x , y , z) = ℓ is a curve C .

Because it lies in both surfaces, C is perpendicular to both of their
normal vectors.

Since the normal vectors are ∇g and ∇h, this means that

v = ∇g ×∇h is tangent to C .
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The extrema of f on C therefore occur where

0 = Dvf =
∇f · v
|v| ⇒ ∇f · v = 0

⇒ ∇f is orth. to v = ∇g ×∇h

⇒ ∇f is in the plane of ∇g and ∇h

⇒ ∇f = λ∇g + µ∇h

for some scalars λ and µ.

Remark. The equivalent condition ∇f · (∇g ×∇h) = 0 can also
be useful.
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Example 5

Find the extrema of f (x , y , z) = x + 2y subject to the constraints
x + y + z = 1 and y2 + z2 = 4.

Solution. The intersection of the plane g(x , y , z) = x + y + z = 1
and the cylinder h(x , y , z) = y2 + z2 = 4 is an ellipse (in R

3),
which is compact.
Since f is continuous, the EVT guarantees the existence of global
extrema.
The two constraint Lagrange system is

1 = λ · 1 + µ · 0 = λ,

2 = λ · 1 + µ · 2y = λ+ 2µy ,

0 = λ · 1 + µ · 2z = λ+ 2µz ,

x + y + z = 1,

y2 + z2 = 4.
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The first equation tells us that λ = 1. Plugging this into the
second two equations we get

2µy = 1
2µz = −1

}

⇒ 2µ =
1

y
=

−1

z
⇒ y = −z .

Plugging into the fourth equation we obtain

1 = x + y + z = x + y − y = x .

Plugging into the last equation we find that

4 = y2 + z2 = 2y2 ⇒ y = ±
√
2 ⇒ z = ∓

√
2.

So we have two Lagrange points: (1,±
√
2,∓

√
2).
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Finally, we have the values

f (1,±
√
2,∓

√
2) = 1± 2

√
2,

so that the absolute maximum is 1 + 2
√
2 and the absolute

minimum is 1− 2
√
2.
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