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Recall

To find the extrema of a differentiable function f(x,y) on a
compact domain D C R?:

1. Determine the critical points of f inside D.

2. Determine the extrema of f on the boundary 9D.

3. Compare the values of f at the points found in 1 and 2.

Step 2 can be quite challenging.

However, if 0D is given by an equation, we can appeal to the
Method of Lagrange Multipliers.
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Motivating Example

Find the global extrema of f(x,y) = x> + xy + y? on the circle
x2+y?=4.

See Maple diagram.
Solution 1. On the circle we have y = £v4 — x2, -2 < x < 2.

So we need to optimize the pair of functions
f(x, V4 —x2) =x*> £ x4 —x2+ (4 —x*) =4+ x\/4 — x2

on the closed interval [—2,2].
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The product and chain rules give

2
i(4ixv4—x2) N N B —
dx 4 _ 2

::l:4—2X2
4 — x2

which vanishes iff x = +1/2.

We then have the table of values

X ‘ 44 x4 — x2
++/2 2,6
+2 4

We find that the absolute maximum value is 6 and the absolute
minimum is 2. O
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Solution 2. The circle can be parametrized by

x =2cos,

y = 2sinf,

with 0 < 6 < 27.

Substitution yields
f(2cos 6,2sinf) = 4cos? O + 4 cos sinf + 4sin® 0
= 4(1 + cosfsin0) = g(0).
To find the critical points we set
g'(8) = 4(cos? § — sin® §) = 4 cos 20 = 0,
and find that 0 = 7 /4,37 /4,57 /4,77 /4.
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Including the endpoint(s) we get the table of values

0 | 4(1 4 cos@sin §)
/4,57 /4 6
3 /4, T /4 2
0,2 4

Again we find the absolute maximum and minimum values of 6
and 2 (resp.). O

Remark. Note that the extreme values occur at the four “corners”
of the circle x? + y? = 4.
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A Better Idea

Solution 3. Let's look at a contour plot of f(x,y) and superimpose
the circle x> + y? = 4.




If v is tangent to the circle x? + y2 = 4, the extrema of f(x, y)
must occur where

£
O:D‘,f:% & Vfisorth. tov
< Vfisnormalto x* +y%> =4
———
g(x.y)
<= Vf is parallel to Vg
— Vf=\Vg

for some scalar \. That is,

(2x +y,x 4+ 2y) = A\(2x,2y).
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This gives us the system of three equations

2x +y = 2)x,
X+ 2y =2y,
2 2 _

X+ y =4

in the three unknowns x,y and A.

The Lagrange Multiplier A is an auxiliary quantity, so we eliminate
it.

Multiply the first equation by y and the second by x to get

2xy + y? = 2\xy

2_ 2 2_ 2
x2+2xy:2)\xy} = 2Xy+y =x"+2xy = x"=y°.
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Plugging this into the third equation (the constraint) gives
22 =4 = xX*>=2 = x==+V2.
Since x%2 = y?, we get y = 4+/2, with no correlation between the

signs.

So we have 4 Lagrange points: (£v/2,1/2), (£v/2,—+/2). And the
extrema must occur here.

Finally, we construct a table of values:

(x,y) | X*+xy+y?
(V2,V2) 6
(\/5, \/§) 2 = Abs. Max. Value is 6,
(—v2,V2) 2 Abs. Min. Value is 2.
(—v2,-V2) 6
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Constrained Optimization

Let's take a look at the general situation.

Suppose that f(x, y) and g(x, y) are differentiable and that
Vg # 0 along the contour g(x,y) = k.

We would like to optimize f(x, y) subject to the constraint
g(x,y) = k.

The Implicit Function Theorem implies that the equation
g(x,y) = k defines y as a differentiable function of x (or vice

versa).

This allows us to reduce to a single variable problem.

Daileda Lagrange Multipliers



For convenience, assume y = y(x).

Recall that along g(x, y) = k the chain rule yields
dy —0g/ox

dx  0g/oy

So we have f(x,y) = f(x, y(x)). The critical points of this
function occur where

_ Ofdx  Ofdy _ Of Of 0g/dx

T Ox dx +@$ ~ Ox 0Oy dg/oy

0= 2 flx,y(x)

Multiplying through by 0g /0y this becomes

fe f,

=Vf x Vg,
8x 8y &

o Ao = I8y — gk =
Ox dy Oy Ox & &
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The Method of Lagrange Multipliers

This means that Vf and Vg are parallel, i.e. Vf = AV g for some
scalar A. This proves:

Suppose f(x,y) and g(x,y) are differentiable and that Vg # 0
along the contour g(x,y) = k. The extrema of f(x,y) subject to
the constraint g(x,y) = k (if they exist) must occur where

Vf = AVg.

Remarks.

@ We will call the points where Vf = AV g the Lagrange points
of the constrained optimization problem.

@ The quantity \ is a Lagrange multiplier. In practical
applications it has meaningful interpretations.
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More Remarks

o If f and g are differentiable functions of n of variables, and
Vg # 0 along the level set g = k (an (n — 1)-dimensional
manifold), a similar argument shows that the extrema of f
subject to g = k must occur where Vf = A\Vg.

@ By equating components, the vector equation Vf = A\Vg
yields n ordinary equations in n + 1 variables.

@ Therefore the Lagrange system

Vf=MAVg,
g =k,

amounts to n+ 1 equations in n 4+ 1 unknowns.
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@ We will not utilize A, so our goal is primarily to eliminate it.

@ In 2 and 3 variables this is easily achieved by replacing
Vf = AVg with the equivalent equation Vf x Vg = 0.

Find the global extrema of f(x,y) = 2x? 4 y? subject to the
constraint x% + xy + y? = 2.

Solution. f(x,y) is continuous and g(x,y) = x>+ xy + y? =2
represents an ellipse, which is compact.

The EVT guarantees that f has global extrema subject to the
constraint g = 2.
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The Lagrange equations are

fc £,

8x 8y
=4x(x +2y) — 2y(2x + y)
= 4x°? + 4xy — 2y2 =0,

x? + Xy +y2 =2

Vf X Vg = == fxgy - ﬂ/gx

If we multiply the second equation by 4 and subtract it from the
first we obtain

4
—by?=-8 = y'=3 = y=4—-.
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Substituting y = £2v/3/3 back into x? + xy + y? = 2 gives us

V3
x:i<1i?),

with no correlation between the signs.

This means we have 4 Lagrange points with the following values:

(x,¥) | 2x% +y°
V3 2V3 43
F1+5),+5%) | 4+75°

V3 2v3 4/3
F\1-%)F5%7) | 4-7%

So the absolute maximum value is 4 + 4\/§/3 ~ 6.309 and the
absolute minimum value is 4 — 41/3/3 ~ 1.691. O
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More Examples

Find the global extrema of f(x,y,z) = 2x + 6y + 10z on the
sphere x? + y? + z2 = 35,

Solution. Since f is continuous and the sphere
g(x,y,z) = x> + y?> + z2 = 35 is compact, the EVT guarantees
global extrema exist.

The Lagrange system is

2 = 2)x,
6 =2\y,
10 =2)z,

35 = x? +y? + 2%
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Since A # 0 (why?), we can solve the first three equations for 1/\:

= X =

W<

1
X :g = y =3x and z = bx.

Plugging these into the sphere's equation we get

35 =x2+y? +22=x2+ (3x)* + (5x)? = 35x° = x ==+,

We therefore have two Lagrange points with values:

X,¥,Z2) ‘ 2x + 6y + 10z

1,3,5) 70 = Abs. Max. Value is 70,

(—1,-3,-5) —70 Abs. Min. Value is -70.
]
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Example 4

Recall the problem of maximizing the volume V = xyz of a box
with one vertex on the plane x + 2y + 3z = 6. Use Lagrange
multipliers to find the maximum volume.

Solution. With g(x,y,z) = x + 2y + 3z the Lagrange system is

yz = A,
xz = 2\,
xy = 3],

6 =x+2y+ 3z,

which means that

Daileda Lagrange Multipliers



If x=0, y=0o0rz=0, then V =0, which is not the maximum
volume.
So we can divide by x, y, z to obtain

X

y:2 and z =

X
3
Plugging into x + 2y + 3z = 6 gives us

6:x+2<§)+3<§):3x = x=2 = yzlandz:g.

So the optimal dimensions are 2 x 1 x 2/3, with volume
V =4/3. O
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Multiple Constraints

Suppose we are asked to optimize f(x,y, z) subject to the two
constraint equations g(x,y,z) = k and h(x,y,z) = ¢.

The intersection of the level surfaces g(x,y,z) = k and
h(x,y,z) ={is a curve C.

Because it lies in both surfaces, C is perpendicular to both of their
normal vectors.

Since the normal vectors are Vg and VA, this means that

v = Vg x Vh is tangent to C.
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The extrema of f on C therefore occur where

Vf-v=0
Vfisorth. tov=Vg x Vh
Vf is in the plane of Vg and Vh

R

Vf = \Vg + uVh

for some scalars A and p.

Remark. The equivalent condition Vf - (Vg x Vh) =0 can also
be useful.
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Find the extrema of f(x,y,z) = x + 2y subject to the constraints
x+y+z=1and y?+ 22 =4.

Solution. The intersection of the plane g(x,y,z) =x+y+z=1
and the cylinder h(x,y,z) = y? + z?> = 4 is an ellipse (in R3),
which is compact.
Since f is continuous, the EVT guarantees the existence of global
extrema.
The two constraint Lagrange system is
I1=XA-14+p-0=2A,
2=X-14pu-2y =X+ 2uy,
O0=X-14pu-2z2=XA+2uz,
X+y+z=1,
y2 422 =4,
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The first equation tells us that A = 1. Plugging this into the
second two equations we get

2uy =1 1 -1 _
2,uz:—1} = 2,u—y— S T y=-z

Plugging into the fourth equation we obtain

l=x4+y+z=x4+y—y=x.

Plugging into the last equation we find that

4:y2—|—22:2y2 = yz:l:x/i = z:IF\/E.

So we have two Lagrange points: (1, +v/2, Fv/2).
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Finally, we have the values
f(1,£V2, 7v2) =1+ 2V2,

so that the absolute maximum is 1 + 21/2 and the absolute
minimum is 1 — 24/2.
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