The Method of Lagrange Multipliers

Ryan C. Daileda

Trinity University
Calculus III

Recall

To find the extrema of a differentiable function $f(x, y)$ on a compact domain $D \subset \mathbb{R}^{2}$:

1. Determine the critical points of f inside D.
2. Determine the extrema of f on the boundary ∂D.
3. Compare the values of f at the points found in $\mathbf{1}$ and $\mathbf{2}$.

Step 2 can be quite challenging.

However, if ∂D is given by an equation, we can appeal to the Method of Lagrange Multipliers.

Motivating Example

Example 1

Find the global extrema of $f(x, y)=x^{2}+x y+y^{2}$ on the circle $x^{2}+y^{2}=4$.

See Maple diagram.
Solution 1. On the circle we have $y= \pm \sqrt{4-x^{2}},-2 \leq x \leq 2$.
So we need to optimize the pair of functions

$$
f\left(x, \pm \sqrt{4-x^{2}}\right)=x^{2} \pm x \sqrt{4-x^{2}}+\left(4-x^{2}\right)=4 \pm x \sqrt{4-x^{2}}
$$

on the closed interval $[-2,2]$.

The product and chain rules give

$$
\begin{aligned}
\frac{d}{d x}\left(4 \pm x \sqrt{4-x^{2}}\right) & = \pm\left(\sqrt{4-x^{2}}-\frac{x^{2}}{\sqrt{4-x^{2}}}\right) \\
& = \pm \frac{4-2 x^{2}}{\sqrt{4-x^{2}}}
\end{aligned}
$$

which vanishes iff $x= \pm \sqrt{2}$.
We then have the table of values

$$
\begin{array}{c|c}
x & 4 \pm x \sqrt{4-x^{2}} \\
\hline \pm \sqrt{2} & 2,6 \\
\pm 2 & 4
\end{array}
$$

We find that the absolute maximum value is 6 and the absolute minimum is 2 .

Solution 2. The circle can be parametrized by

$$
\begin{aligned}
& x=2 \cos \theta \\
& y=2 \sin \theta
\end{aligned}
$$

with $0 \leq \theta \leq 2 \pi$.
Substitution yields

$$
\begin{aligned}
f(2 \cos \theta, 2 \sin \theta) & =4 \cos ^{2} \theta+4 \cos \theta \sin \theta+4 \sin ^{2} \theta \\
& =4(1+\cos \theta \sin \theta)=g(\theta)
\end{aligned}
$$

To find the critical points we set

$$
g^{\prime}(\theta)=4\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=4 \cos 2 \theta=0
$$

and find that $\theta=\pi / 4,3 \pi / 4,5 \pi / 4,7 \pi / 4$.

Including the endpoint(s) we get the table of values

θ	$4(1+\cos \theta \sin \theta)$
$\pi / 4,5 \pi / 4$	6
$3 \pi / 4,7 \pi / 4$	2
$0,2 \pi$	4

Again we find the absolute maximum and minimum values of 6 and 2 (resp.).

Remark. Note that the extreme values occur at the four "corners" of the circle $x^{2}+y^{2}=4$.

A Better Idea

Solution 3. Let's look at a contour plot of $f(x, y)$ and superimpose the circle $x^{2}+y^{2}=4$.

If \mathbf{v} is tangent to the circle $x^{2}+y^{2}=4$, the extrema of $f(x, y)$ must occur where

$$
\begin{aligned}
0=D_{\mathbf{v}} f=\frac{\nabla f \cdot \mathbf{v}}{|\mathbf{v}|} & \Longleftrightarrow \nabla f \text { is orth. to } \mathbf{v} \\
& \Longleftrightarrow \nabla f \text { is normal to } \underbrace{x^{2}+y^{2}}_{g(x, y)}=4 \\
& \Longleftrightarrow \nabla f \text { is parallel to } \nabla g \\
& \Longleftrightarrow \nabla f=\lambda \nabla g
\end{aligned}
$$

for some scalar λ. That is,

$$
\langle 2 x+y, x+2 y\rangle=\lambda\langle 2 x, 2 y\rangle
$$

This gives us the system of three equations

$$
\begin{aligned}
2 x+y & =2 \lambda x \\
x+2 y & =2 \lambda y \\
x^{2}+y^{2} & =4
\end{aligned}
$$

in the three unknowns x, y and λ.
The Lagrange Multiplier λ is an auxiliary quantity, so we eliminate it.

Multiply the first equation by y and the second by x to get

$$
\left.\begin{array}{r}
2 x y+y^{2}=2 \lambda x y \\
x^{2}+2 x y=2 \lambda x y
\end{array}\right\} \Rightarrow 2 x y+y^{2}=x^{2}+2 x y \Rightarrow x^{2}=y^{2}
$$

Plugging this into the third equation (the constraint) gives

$$
2 x^{2}=4 \Rightarrow x^{2}=2 \Rightarrow x= \pm \sqrt{2}
$$

Since $x^{2}=y^{2}$, we get $y= \pm \sqrt{2}$, with no correlation between the signs.
So we have 4 Lagrange points: $(\pm \sqrt{2}, \sqrt{2}),(\pm \sqrt{2},-\sqrt{2})$. And the extrema must occur here.

Finally, we construct a table of values:

(x, y)	$x^{2}+x y+y^{2}$
$(\sqrt{2}, \sqrt{2})$	6
$(\sqrt{2},-\sqrt{2})$	2
$(-\sqrt{2}, \sqrt{2})$	2
$(-\sqrt{2},-\sqrt{2})$	6

$\Rightarrow \quad$ Abs. Max. Value is 6 , Abs. Min. Value is 2.

Constrained Optimization

Let's take a look at the general situation.

Suppose that $f(x, y)$ and $g(x, y)$ are differentiable and that $\nabla g \neq \mathbf{0}$ along the contour $g(x, y)=k$.

We would like to optimize $f(x, y)$ subject to the constraint $g(x, y)=k$.

The Implicit Function Theorem implies that the equation $g(x, y)=k$ defines y as a differentiable function of x (or vice versa).

This allows us to reduce to a single variable problem.

For convenience, assume $y=y(x)$.
Recall that along $g(x, y)=k$ the chain rule yields

$$
\frac{d y}{d x}=\frac{-\partial g / \partial x}{\partial g / \partial y}
$$

So we have $f(x, y)=f(x, y(x))$. The critical points of this function occur where

$$
0=\frac{d}{d x} f(x, y(x))=\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}=\frac{\partial f}{\partial x}-\frac{\partial f}{\partial y} \frac{\partial g / \partial x}{\partial g / \partial y}
$$

Multiplying through by $\partial g / \partial y$ this becomes

$$
0=\frac{\partial f}{\partial x} \frac{\partial g}{\partial y}-\frac{\partial f}{\partial y} \frac{\partial g}{\partial x}=f_{x} g_{y}-f_{y} g_{x}=\left|\begin{array}{ll}
f_{x} & f_{y} \\
g_{x} & g_{y}
\end{array}\right|=\nabla f \times \nabla g,
$$

The Method of Lagrange Multipliers

This means that ∇f and ∇g are parallel, i.e. $\nabla f=\lambda \nabla g$ for some scalar λ. This proves:

Theorem 1

Suppose $f(x, y)$ and $g(x, y)$ are differentiable and that $\nabla g \neq \mathbf{0}$ along the contour $g(x, y)=k$. The extrema of $f(x, y)$ subject to the constraint $g(x, y)=k$ (if they exist) must occur where $\nabla f=\lambda \nabla g$.

Remarks.

- We will call the points where $\nabla f=\lambda \nabla g$ the Lagrange points of the constrained optimization problem.
- The quantity λ is a Lagrange multiplier. In practical applications it has meaningful interpretations.

More Remarks

- If f and g are differentiable functions of n of variables, and $\nabla g \neq \mathbf{0}$ along the level set $g=k$ (an ($n-1$)-dimensional manifold), a similar argument shows that the extrema of f subject to $g=k$ must occur where $\nabla f=\lambda \nabla g$.
- By equating components, the vector equation $\nabla f=\lambda \nabla g$ yields n ordinary equations in $n+1$ variables.
- Therefore the Lagrange system

$$
\begin{aligned}
\nabla f & =\lambda \nabla g \\
g & =k
\end{aligned}
$$

amounts to $n+1$ equations in $n+1$ unknowns.

- We will not utilize λ, so our goal is primarily to eliminate it.
- In 2 and 3 variables this is easily achieved by replacing $\nabla f=\lambda \nabla g$ with the equivalent equation $\nabla f \times \nabla g=\mathbf{0}$.

Example 2

Find the global extrema of $f(x, y)=2 x^{2}+y^{2}$ subject to the constraint $x^{2}+x y+y^{2}=2$.

Solution. $f(x, y)$ is continuous and $g(x, y)=x^{2}+x y+y^{2}=2$ represents an ellipse, which is compact.

The EVT guarantees that f has global extrema subject to the constraint $g=2$.

The Lagrange equations are

$$
\begin{aligned}
\nabla f \times \nabla g & =\left|\begin{array}{ll}
f_{x} & f_{y} \\
g_{x} & g_{y}
\end{array}\right|=f_{x} g_{y}-f_{y} g_{x} \\
& =4 x(x+2 y)-2 y(2 x+y) \\
& =4 x^{2}+4 x y-2 y^{2}=0, \\
x^{2}+x y+y^{2} & =2 .
\end{aligned}
$$

If we multiply the second equation by 4 and subtract it from the first we obtain

$$
-6 y^{2}=-8 \Rightarrow y^{2}=\frac{4}{3} \Rightarrow y= \pm \frac{2 \sqrt{3}}{3}
$$

Substituting $y= \pm 2 \sqrt{3} / 3$ back into $x^{2}+x y+y^{2}=2$ gives us

$$
x= \pm\left(1 \pm \frac{\sqrt{3}}{3}\right)
$$

with no correlation between the signs.
This means we have 4 Lagrange points with the following values:

$$
\begin{array}{c|c}
(x, y) & 2 x^{2}+y^{2} \\
\hline\left(\mp\left(1+\frac{\sqrt{3}}{3}\right), \pm \frac{2 \sqrt{3}}{3}\right) & 4+\frac{4 \sqrt{3}}{3} \\
\left(\pm\left(1-\frac{\sqrt{3}}{3}\right), \pm \frac{2 \sqrt{3}}{3}\right) & 4-\frac{4 \sqrt{3}}{3}
\end{array}
$$

So the absolute maximum value is $4+4 \sqrt{3} / 3 \approx 6.309$ and the absolute minimum value is $4-4 \sqrt{3} / 3 \approx 1.691$.

More Examples

Example 3

Find the global extrema of $f(x, y, z)=2 x+6 y+10 z$ on the sphere $x^{2}+y^{2}+z^{2}=35$.

Solution. Since f is continuous and the sphere $g(x, y, z)=x^{2}+y^{2}+z^{2}=35$ is compact, the EVT guarantees global extrema exist.
The Lagrange system is

$$
\begin{aligned}
2 & =2 \lambda x \\
6 & =2 \lambda y \\
10 & =2 \lambda z \\
35 & =x^{2}+y^{2}+z^{2}
\end{aligned}
$$

Since $\lambda \neq 0$ (why?), we can solve the first three equations for $1 / \lambda$:

$$
\frac{1}{\lambda}=x=\frac{y}{3}=\frac{z}{5} \Rightarrow y=3 x \text { and } z=5 x
$$

Plugging these into the sphere's equation we get

$$
35=x^{2}+y^{2}+z^{2}=x^{2}+(3 x)^{2}+(5 x)^{2}=35 x^{2} \Rightarrow x= \pm 1
$$

We therefore have two Lagrange points with values:

(x, y, z)	$2 x+6 y+10 z$
$(1,3,5)$	70
$(-1,-3,-5)$	-70

Abs. Max. Value is 70 , Abs. Min. Value is -70 .

Example 4

Recall the problem of maximizing the volume $V=x y z$ of a box with one vertex on the plane $x+2 y+3 z=6$. Use Lagrange multipliers to find the maximum volume.

Solution. With $g(x, y, z)=x+2 y+3 z$ the Lagrange system is

$$
\begin{aligned}
y z & =\lambda \\
x z & =2 \lambda, \\
x y & =3 \lambda, \\
6 & =x+2 y+3 z
\end{aligned}
$$

which means that

$$
\lambda=y z=\frac{x z}{2}=\frac{x y}{3} .
$$

If $x=0, y=0$ or $z=0$, then $V=0$, which is not the maximum volume.

So we can divide by x, y, z to obtain

$$
y=\frac{x}{2} \text { and } z=\frac{x}{3} .
$$

Plugging into $x+2 y+3 z=6$ gives us

$$
6=x+2\left(\frac{x}{2}\right)+3\left(\frac{x}{3}\right)=3 x \Rightarrow x=2 \Rightarrow y=1 \text { and } z=\frac{2}{3} .
$$

So the optimal dimensions are $2 \times 1 \times 2 / 3$, with volume $V=4 / 3$.

Multiple Constraints

Suppose we are asked to optimize $f(x, y, z)$ subject to the two constraint equations $g(x, y, z)=k$ and $h(x, y, z)=\ell$.

The intersection of the level surfaces $g(x, y, z)=k$ and $h(x, y, z)=\ell$ is a curve C.

Because it lies in both surfaces, C is perpendicular to both of their normal vectors.

Since the normal vectors are ∇g and ∇h, this means that

$$
\mathbf{v}=\nabla g \times \nabla h \text { is tangent to } C .
$$

The extrema of f on C therefore occur where

$$
\begin{aligned}
0=D_{\mathbf{v}} f=\frac{\nabla f \cdot \mathbf{v}}{|\mathbf{v}|} & \Rightarrow \nabla f \cdot \mathbf{v}=0 \\
& \Rightarrow \nabla f \text { is orth. to } \mathbf{v}=\nabla g \times \nabla h \\
& \Rightarrow \nabla f \text { is in the plane of } \nabla g \text { and } \nabla h \\
& \Rightarrow \nabla f=\lambda \nabla g+\mu \nabla h
\end{aligned}
$$

for some scalars λ and μ.

Remark. The equivalent condition $\nabla f \cdot(\nabla g \times \nabla h)=0$ can also be useful.

Example 5

Find the extrema of $f(x, y, z)=x+2 y$ subject to the constraints $x+y+z=1$ and $y^{2}+z^{2}=4$.

Solution. The intersection of the plane $g(x, y, z)=x+y+z=1$ and the cylinder $h(x, y, z)=y^{2}+z^{2}=4$ is an ellipse (in \mathbb{R}^{3}), which is compact.
Since f is continuous, the EVT guarantees the existence of global extrema.
The two constraint Lagrange system is

$$
\begin{aligned}
& 1=\lambda \cdot 1+\mu \cdot 0=\lambda, \\
& 2=\lambda \cdot 1+\mu \cdot 2 y=\lambda+2 \mu y, \\
& 0=\lambda \cdot 1+\mu \cdot 2 z=\lambda+2 \mu z, \\
& x+y+z=1, \\
& y^{2}+z^{2}=4 .
\end{aligned}
$$

The first equation tells us that $\lambda=1$. Plugging this into the second two equations we get

$$
\left.\begin{array}{c}
2 \mu y=1 \\
2 \mu z=-1
\end{array}\right\} \Rightarrow 2 \mu=\frac{1}{y}=\frac{-1}{z} \Rightarrow y=-z
$$

Plugging into the fourth equation we obtain

$$
1=x+y+z=x+y-y=x
$$

Plugging into the last equation we find that

$$
4=y^{2}+z^{2}=2 y^{2} \Rightarrow y= \pm \sqrt{2} \Rightarrow z=\mp \sqrt{2}
$$

So we have two Lagrange points: $(1, \pm \sqrt{2}, \mp \sqrt{2})$.

Finally, we have the values

$$
f(1, \pm \sqrt{2}, \mp \sqrt{2})=1 \pm 2 \sqrt{2}
$$

so that the absolute maximum is $1+2 \sqrt{2}$ and the absolute minimum is $1-2 \sqrt{2}$.

