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Introduction

Today we will begin our study of integration in multiple variables.

As we will see, there are a number of different multivariate
integrals, depending on the type of object being integrated.

Specifically, we will (eventually) study: double integrals, triple
integrals, line integrals, and surface integrals.

To motivate our constructions, we will begin by reviewing how the
integral of a single variable is defined.

Daileda Double Integrals



Single Variable Integrals

Recall. Given a function f (x) on a closed interval [a, b], the

integral

∫ b

a

f (x) dx is defined as the limit of Riemann sums.

Specifically, we first subdivide [a, b] into n subintervals:

a = x0 < x1 < x2 < · · · < xi−1 < xi < · · · < xn−1 < xn = b.

We then form the Riemann sum

n
∑

i=1

f (x∗i )∆xi , where:

x∗i = sample point in the subinterval [xi−1, xi ],

∆xi = xi − xi−1 is the length of [xi−1, xi ].
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Finally, we take the limit as the size of the subdivisions tends to
zero:

∫ b

a

f (x) dx = lim
∆x→0

n
∑

i=1

f (x∗i )∆xi ,

where ∆x = max
1≤i≤n

∆xi is the maximum size of the subdivisions.

We say that f is integrable provided this limit exists (and is
independent of the choices made in its construction).

We can visually represent each term f (x∗i )∆xi in the Riemann sum
as the (signed) area of a rectangle that approximately sits between
the graph y = f (x) and the x-axis.
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The total Riemann sum therefore represents the approximate
(signed) area between y = f (x) and the x-axis.

As the rectangles become smaller (i.e. n → ∞), the approximation
becomes better and better, and we arrive at the interpretation

∫ b

a

f (x) dx =(Area below y = f (x) and above the x-axis)

− (Area above y = f (x) and below the x-axis)
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Double Integrals

We would like to mimic the procedure above for a function f (x , y)
with domain D ⊂ R

2.

For simplicity, we begin by assuming that D = R is a rectangle
with its sides parallel to the coordinate axes:

R = [a, b]× [c , d ].

We subdivide R into smaller rectangles by simultaneously
subdividing the intervals [a, b] and [c , d ]:

a = x0 < x1 < x2 < · · · < xi−1 < xi < · · · < xm−1 < xm = b,

c = y0 < y1 < y2 < · · · < yj−1 < yj < · · · < yn−1 < yn = d .
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We let Rij denote the subrectangle in the (i , j) position. Notice
that:

There are mn total subrectangles Rij .

The area of Rij is ∆Aij = ∆xi∆yj = (xi − xi−1)(yj − yj−1).
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Choosing a sample point (x∗i , y
∗
j ) in each Rij , we build the

Riemann sum

m
∑

i=1

n
∑

j=1

f (x∗i , y
∗
j )∆Aij =

m
∑

i=1

n
∑

j=1

f (x∗i , y
∗
j )∆xi∆yj .

Finally, we let the sizes of the subdivisions tend to zero and define

∫∫

R

f (x , y) dA = lim
∆x ,∆y→0

m
∑

i=1

n
∑

j=1

f (x∗i , y
∗
j )∆Aij ,

where ∆x = max
1≤i≤m

∆xi and ∆y = max
1≤j≤n

∆yj .

We say that f is integrable provided this limit exists (and is
independent of our choices).
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Interpreting Double Integrals

The values f (x∗i , y
∗
j ) represent heights on the graph z = f (x , y)

above the sample points (x∗i , y
∗
j ).

The terms f (x∗i , y
∗
j )∆Aij of the Riemann sum therefore represent

the (signed) volumes of rectangular prisms inserted between
z = f (x , y) and the xy -plane.

The total Riemann sum therefore represents the approximate
(signed) volume between z = f (x , y) and the xy -plane.

See Maple diagram.
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It follows that the double integral is a “signed” volume:

∫∫

R

f (x , y) dA =(Volume below z = f (x , y) and above R)

− (Volume above z = f (x , y) and below R).

We can use this interpretation to help us compute the values of
double integrals.

Example 1

If f (x , y) = k (constant), evaluate

∫∫

R

f dA.
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Solution. The graph of z = k is a horizontal plane (parallel to the
xy -plane).

The region between the graph and R is therefore a rectangular
solid.

Thus
∫∫

R

k dA = height × area of R = k · Area(R) .

Remark. Compare this to the single variable result

∫ b

a

k dx = k(b − a) = k · Length([a, b]).
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Example 2

Compute

∫∫

R

2− x dA, where R = [0, 2] × [0, 3].

Solution. The graph z = 2− x is a plane parallel to the y -axis:

x

y

z

2

2

3
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The integral therefore represents the volume of a triangular prism:

∫∫

R

2− x dA = area of triangular face × width

=

(

1

2
· 2 · 2

)

· 3 = 6 .

Example 3

Compute

∫∫

R

2− x2 − y2 dA, where R = [−1, 1]× [−1, 1].

Solution. The graph z = 2− x2 − y2 is a downward opening
paraboloid.
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The integral therefore represents the volume of a parabolic “tent.”

See Maple diagram.

To compute the volume we appeal to Cavalieri’s Principle, which
asserts that volume is the integral of cross-sectional area.

The area of a cross section of the tent perpendicular to the y -axis
is given by

A(y) =

∫ 1

−1

2− x2 − y2 dx = 2x −
x3

3
− xy2

∣

∣

∣

∣

x=1

x=−1

=

(

2−
1

3
− y2

)

−

(

−2 +
1

3
+ y2

)

=
10

3
− 2y2.
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The value of the double integral is therefore

∫∫

R

2−x2 − y2 dA =

∫ 1

−1

A(y) dy =

∫ 1

−1

10

3
− 2y2 dy

=
10

3
y −

2

3
y3
∣

∣

∣

∣

1

−1

=

(

10

3
−

2

3

)

−

(

−
10

3
+

2

3

)

=
16

3
.

Remark. Notice that if we had simply substituted in the integral
expression for A(y), we would have had

∫∫

R

2− x2 − y2 dA =

∫ 1

−1

A(y) dy =

∫ 1

−1

(
∫ 1

−1

2− x2 − y2 dy

)

dx

=

∫ 1

−1

∫ 1

−1

2− x2 − y2 dy dx .
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Iterated Integrals and Fubini’s Theorem

Such an expression is called an iterated integral. The following
result tells us that double integrals can always be expressed as
iterated integrals.

Theorem 1 (Fubini)

If f (x , y) is integrable on R = [a, b]× [c , d ], then

∫∫

R

f (x , y) dA =

∫ b

a

∫ d

c

f (x , y) dy dx =

∫ d

c

∫ b

a

f (x , y) dx dy .

Remarks.

Iterated integrals are always evaluated inside to outside.

Notice that Fubini’s theorem tells us that the order of
integration doesn’t matter.
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Examples

Remark. Before proceeding to our examples, we note that all
continuous functions are necessarily integrable, so that Fubini’s
theorem automatically applies to their integrals.

Example 4

If R = [0, π/2] × [0, π], evaluate

∫∫

R

sin(x + 2y) dA.

Solution. By Fubini’s theorem we have

∫∫

R

sin(x + 2y) dA =

∫ π/2

0

∫ π

0

sin(x + 2y) dy dx

=

∫ π/2

0

− cos(x + 2y)

2

∣

∣

∣

∣

y=π

y=0

dx
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=

∫ π/2

0

cos x

2
−

cos(x + 2π)

2
dx

=

∫ π/2

0

cos x

2
−

cos x

2
dx =

∫ π/2

0

0 dx = 0 .

Example 5

If R = [−1, 2] × [1, 3], evaluate

∫∫

R

x2y + x + y dA.

Solution. By Fubini’s theorem we have

∫∫

R

x2y + x + y dA =

∫ 2

−1

∫ 3

1

x2y + x + y dy dx
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∫ 2

−1

∫ 3

1

x2y + x + y dy dx =

∫ 2

−1

x2y2

2
+ xy +

y2

2

∣

∣

∣

∣

y=3

y=1

dx

=

∫ 2

−1

(

9x2

2
+ 3x +

9

2

)

−

(

x2

2
+ x +

1

2

)

dx

=

∫ 2

−1

4x2 + 2x + 4 dx =
4x3

3
+ x2 + 4x

∣

∣

∣

∣

2

−1

=

(

32

3
+ 4 + 8

)

−

(

−
4

3
+ 1− 4

)

= 27 .
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A function f (x , y) is called separable if f (x , y) = g(x)h(y). Notice
that in this case

∫ b

a

∫ d

c

f (x , y) dy dx =

∫ b

a

(
∫ d

c

g(x)h(y) dy

)

dx

=

∫ b

a

g(x)

(
∫ d

c

h(y) dy

)

dx

=

(
∫ d

c

h(y) dy

)(
∫ b

a

g(x) dx

)

.

That is, the double integral is simply the product of two
single-variable integrals.

This can simplify some double integral computations.
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Example 6

Evaluate

∫∫

R

x3ey
2

dA, where R = [−1, 1] × [0, 2].

Solution. By Fubini’s theorem we have

∫∫

R

x3ey
2

dA =

∫ 1

−1

∫ 2

0

x3ey
2

dy dx

=

(
∫ 1

−1

x3 dx

)(
∫ 2

0

ey
2

dy

)

,

since the integrand is separable. Because x3 is an odd function and
the interval [−1, 1] is symmetric about 0,

(
∫ 1

−1

x3 dx

)(
∫ 2

0

ey
2

dy

)

= 0 ·

∫ 2

0

ey
2

dy = 0 .
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Although the order of integration in an iterated integral doesn’t
matter in principle, in practice it can be rather important.

Example 7

Evaluate the iterated integral

∫ 1

0

∫ 2

0

xyex
2y dy dx .

Solution. If we proceed näıvely and simply integrate by parts in y ,
we find that

∫ 1

0

∫ 2

0

xyex
2y dy dx =

∫ 1

0

(2x2 − 1)e2x
2

+ 1

x3
dx .

This is a rather difficult integral which can be evaluated using
power series, for instance.
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Because the integrand is continuous, Fubini’s theorem, however,
guarantees that

∫ 1

0

∫ 2

0

xyex
2y dy dx =

∫∫

R

xyex
2y dA =

∫ 2

0

∫ 1

0

xyex
2y dx dy ,

where R = [0, 1] × [0, 2].

That is, we are free to reverse the order of integration.

The simple substitution u = x2y (in x) then yields

∫ 2

0

∫ 1

0

xyex
2y dx dy =

1

2

∫ 2

0

ex
2y

∣

∣

∣

∣

x=1

x=0

dy =
1

2

∫ 2

0

ey − 1 dy

=
1

2

(

ey − y

∣

∣

∣

∣

2

0

)

=
e2 − 3

2
.
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