Double Integrals over Rectangular Regions

Ryan C. Daileda

Trinity University

Calculus III

Today we will begin our study of integration in multiple variables.

As we will see, there are a number of different multivariate integrals, depending on the type of object being integrated.

Specifically, we will (eventually) study: double integrals, triple integrals, line integrals, and surface integrals.

To motivate our constructions, we will begin by reviewing how the integral of a single variable is defined.

Recall. Given a function f(x) on a closed interval [a, b], the integral $\int_{a}^{b} f(x) dx$ is defined as the limit of Riemann sums. Specifically, we first subdivide [a, b] into n subintervals:

$$a = x_0 < x_1 < x_2 < \cdots < x_{i-1} < x_i < \cdots < x_{n-1} < x_n = b.$$

We then form the *Riemann sum* $\sum_{i=1}^{n} f(x_i^*) \Delta x_i$, where:

 $x_i^* =$ sample point in the subinterval $[x_{i-1}, x_i]$, $\Delta x_i = x_i - x_{i-1}$ is the length of $[x_{i-1}, x_i]$. Finally, we take the limit as the size of the subdivisions tends to zero:

$$\int_a^b f(x) \, dx = \lim_{\Delta x \to 0} \sum_{i=1}^n f(x_i^*) \Delta x_i,$$

where $\Delta x = \max_{1 \le i \le n} \Delta x_i$ is the maximum size of the subdivisions.

We say that f is *integrable* provided this limit exists (and is independent of the choices made in its construction).

We can visually represent each term $f(x_i^*)\Delta x_i$ in the Riemann sum as the (signed) area of a rectangle that approximately sits between the graph y = f(x) and the x-axis.

The total Riemann sum therefore represents the approximate (signed) area between y = f(x) and the x-axis.

As the rectangles become smaller (i.e. $n \to \infty$), the approximation becomes better and better, and we arrive at the interpretation

$$\int_{a}^{b} f(x) dx = (\text{Area below } y = f(x) \text{ and above the } x\text{-axis})$$
$$- (\text{Area above } y = f(x) \text{ and below the } x\text{-axis})$$

We would like to mimic the procedure above for a function f(x, y) with domain $D \subset \mathbb{R}^2$.

For simplicity, we begin by assuming that D = R is a rectangle with its sides parallel to the coordinate axes:

$$R = [a, b] \times [c, d].$$

We subdivide R into smaller rectangles by simultaneously subdividing the intervals [a, b] and [c, d]:

$$\begin{aligned} a &= x_0 < x_1 < x_2 < \cdots < x_{i-1} < x_i < \cdots < x_{m-1} < x_m = b, \\ c &= y_0 < y_1 < y_2 < \cdots < y_{j-1} < y_j < \cdots < y_{n-1} < y_n = d. \end{aligned}$$

We let R_{ij} denote the subrectangle in the (i, j) position. Notice that:

- There are mn total subrectangles R_{ij} .
- The area of R_{ij} is $\Delta A_{ij} = \Delta x_i \Delta y_j = (x_i x_{i-1})(y_j y_{j-1}).$

Choosing a sample point (x_i^*, y_j^*) in each R_{ij} , we build the *Riemann sum*

$$\sum_{i=1}^{m} \sum_{j=1}^{n} f(x_i^*, y_j^*) \Delta A_{ij} = \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_i^*, y_j^*) \Delta x_i \Delta y_j.$$

Finally, we let the sizes of the subdivisions tend to zero and define

$$\iint_{R} f(x,y) \, dA = \lim_{\Delta x, \Delta y \to 0} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_i^*, y_j^*) \Delta A_{ij},$$

where $\Delta x = \max_{1 \le i \le m} \Delta x_i$ and $\Delta y = \max_{1 \le j \le n} \Delta y_j$.

We say that f is *integrable* provided this limit exists (and is independent of our choices).

The values $f(x_i^*, y_j^*)$ represent heights on the graph z = f(x, y) above the sample points (x_i^*, y_i^*) .

The terms $f(x_i^*, y_j^*)\Delta A_{ij}$ of the Riemann sum therefore represent the (signed) volumes of rectangular prisms inserted between z = f(x, y) and the *xy*-plane.

The total Riemann sum therefore represents the approximate (signed) volume between z = f(x, y) and the *xy*-plane.

See Maple diagram.

It follows that the double integral is a "signed" volume:

$$\iint_{R} f(x, y) \, dA = (\text{Volume below } z = f(x, y) \text{ and above } R)$$
$$- (\text{Volume above } z = f(x, y) \text{ and below } R).$$

We can use this interpretation to help us compute the values of double integrals.

Example 1
If
$$f(x, y) = k$$
 (constant), evaluate $\iint_R f \, dA$.

Solution. The graph of z = k is a horizontal plane (parallel to the *xy*-plane).

The region between the graph and R is therefore a rectangular solid.

Thus

$$\iint_R k \, dA = \text{ height } \times \text{ area of } R = \boxed{k \cdot \text{Area}(R)}.$$

Remark. Compare this to the single variable result

$$\int_{a}^{b} k \, dx = k(b-a) = k \cdot \text{Length}([a, b]).$$

Example 2

Compute
$$\iint_R 2 - x \, dA$$
, where $R = [0, 2] \times [0, 3]$.

Solution. The graph z = 2 - x is a plane parallel to the y-axis:

The integral therefore represents the volume of a triangular prism:

$$\iint_{R} 2 - x \, dA = \text{ area of triangular face } \times \text{ width}$$
$$= \left(\frac{1}{2} \cdot 2 \cdot 2\right) \cdot 3 = \boxed{6}.$$

Example 3

Compute
$$\iint_R 2 - x^2 - y^2 \, dA$$
, where $R = [-1, 1] \times [-1, 1]$.

Solution. The graph $z = 2 - x^2 - y^2$ is a downward opening paraboloid.

The integral therefore represents the volume of a parabolic "tent."

See Maple diagram.

To compute the volume we appeal to *Cavalieri's Principle*, which asserts that volume is the integral of cross-sectional area.

The area of a cross section of the tent perpendicular to the y-axis is given by

$$A(y) = \int_{-1}^{1} 2 - x^2 - y^2 \, dx = 2x - \frac{x^3}{3} - xy^2 \Big|_{x=-1}^{x=1}$$
$$= \left(2 - \frac{1}{3} - y^2\right) - \left(-2 + \frac{1}{3} + y^2\right) = \frac{10}{3} - 2y^2.$$

The value of the double integral is therefore

$$\iint_{R} 2-x^{2}-y^{2} dA = \int_{-1}^{1} A(y) dy = \int_{-1}^{1} \frac{10}{3} - 2y^{2} dy$$
$$= \frac{10}{3}y - \frac{2}{3}y^{3}\Big|_{-1}^{1} = \left(\frac{10}{3} - \frac{2}{3}\right) - \left(-\frac{10}{3} + \frac{2}{3}\right) = \boxed{\frac{16}{3}}.$$

Remark. Notice that if we had simply substituted in the integral expression for A(y), we would have had

$$\iint_{R} 2 - x^{2} - y^{2} dA = \int_{-1}^{1} A(y) dy = \int_{-1}^{1} \left(\int_{-1}^{1} 2 - x^{2} - y^{2} dy \right) dx$$
$$= \int_{-1}^{1} \int_{-1}^{1} 2 - x^{2} - y^{2} dy dx.$$

Iterated Integrals and Fubini's Theorem

Such an expression is called an *iterated integral*. The following result tells us that double integrals can *always* be expressed as iterated integrals.

Theorem 1 (Fubini)

If f(x, y) is integrable on $R = [a, b] \times [c, d]$, then

$$\iint_R f(x,y) \, dA = \int_a^b \int_c^d f(x,y) \, dy \, dx = \int_c^d \int_a^b f(x,y) \, dx \, dy.$$

Remarks.

- Iterated integrals are always evaluated inside to outside.
- Notice that Fubini's theorem tells us that the order of integration doesn't matter.

Remark. Before proceeding to our examples, we note that all continuous functions are necessarily integrable, so that Fubini's theorem automatically applies to their integrals.

Example 4

If
$$R = [0, \pi/2] \times [0, \pi]$$
, evaluate $\iint_R \sin(x + 2y) dA$.

Solution. By Fubini's theorem we have

$$\iint_{R} \sin(x+2y) \, dA = \int_{0}^{\pi/2} \int_{0}^{\pi} \sin(x+2y) \, dy \, dx$$
$$= \int_{0}^{\pi/2} \frac{-\cos(x+2y)}{2} \Big|_{y=0}^{y=\pi} \, dx$$

$$= \int_0^{\pi/2} \frac{\cos x}{2} - \frac{\cos(x+2\pi)}{2} dx$$
$$= \int_0^{\pi/2} \frac{\cos x}{2} - \frac{\cos x}{2} dx = \int_0^{\pi/2} 0 dx = 0.$$

Example 5

If
$$R = [-1, 2] \times [1, 3]$$
, evaluate $\iint_R x^2 y + x + y \, dA$.

Solution. By Fubini's theorem we have

$$\iint_{R} x^{2}y + x + y \, dA = \int_{-1}^{2} \int_{1}^{3} x^{2}y + x + y \, dy \, dx$$

$$\int_{-1}^{2} \int_{1}^{3} x^{2}y + x + y \, dy \, dx = \int_{-1}^{2} \frac{x^{2}y^{2}}{2} + xy + \frac{y^{2}}{2} \Big|_{y=1}^{y=3} dx$$
$$= \int_{-1}^{2} \left(\frac{9x^{2}}{2} + 3x + \frac{9}{2}\right) - \left(\frac{x^{2}}{2} + x + \frac{1}{2}\right) \, dx$$
$$= \int_{-1}^{2} 4x^{2} + 2x + 4 \, dx = \frac{4x^{3}}{3} + x^{2} + 4x \Big|_{-1}^{2}$$
$$= \left(\frac{32}{3} + 4 + 8\right) - \left(-\frac{4}{3} + 1 - 4\right) = \boxed{27}.$$

A function f(x, y) is called *separable* if f(x, y) = g(x)h(y). Notice that in this case

$$\int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx = \int_{a}^{b} \left(\int_{c}^{d} g(x) h(y) \, dy \right) \, dx$$
$$= \int_{a}^{b} g(x) \left(\int_{c}^{d} h(y) \, dy \right) \, dx$$
$$= \left(\int_{c}^{d} h(y) \, dy \right) \left(\int_{a}^{b} g(x) \, dx \right).$$

That is, the double integral is simply the product of two single-variable integrals.

This can simplify some double integral computations.

Example 6

Evaluate
$$\iint_R x^3 e^{y^2} dA$$
, where $R = [-1, 1] \times [0, 2]$.

Solution. By Fubini's theorem we have

$$\iint_{R} x^{3} e^{y^{2}} dA = \int_{-1}^{1} \int_{0}^{2} x^{3} e^{y^{2}} dy dx$$
$$= \left(\int_{-1}^{1} x^{3} dx \right) \left(\int_{0}^{2} e^{y^{2}} dy \right),$$

since the integrand is separable. Because x^3 is an odd function and the interval [-1, 1] is symmetric about 0,

$$\left(\int_{-1}^{1} x^{3} dx\right) \left(\int_{0}^{2} e^{y^{2}} dy\right) = 0 \cdot \int_{0}^{2} e^{y^{2}} dy = \boxed{0}.$$

Although the order of integration in an iterated integral doesn't matter in principle, in practice it can be rather important.

Example 7
Evaluate the iterated integral
$$\int_0^1 \int_0^2 xy e^{x^2y} dy dx$$
.

Solution. If we proceed naïvely and simply integrate by parts in y, we find that

$$\int_0^1 \int_0^2 xy e^{x^2y} \, dy \, dx = \int_0^1 \frac{(2x^2 - 1)e^{2x^2} + 1}{x^3} \, dx.$$

This is a rather difficult integral which can be evaluated using power series, for instance.

Because the integrand is continuous, Fubini's theorem, however, guarantees that

$$\int_0^1 \int_0^2 xy e^{x^2 y} \, dy \, dx = \iint_R xy e^{x^2 y} \, dA = \int_0^2 \int_0^1 xy e^{x^2 y} \, dx \, dy,$$

where $R = [0, 1] \times [0, 2]$.

That is, we are free to reverse the order of integration.

The simple substitution $u = x^2 y$ (in x) then yields

$$\int_{0}^{2} \int_{0}^{1} xy e^{x^{2}y} \, dx \, dy = \frac{1}{2} \int_{0}^{2} e^{x^{2}y} \Big|_{x=0}^{x=1} \, dy = \frac{1}{2} \int_{0}^{2} e^{y} - 1 \, dy$$
$$= \frac{1}{2} \left(e^{y} - y \Big|_{0}^{2} \right) = \boxed{\frac{e^{2} - 3}{2}}.$$