Double Integrals over Rectangular Regions

Ryan C. Daileda

Trinity University
Calculus III

Introduction

Today we will begin our study of integration in multiple variables.

As we will see, there are a number of different multivariate integrals, depending on the type of object being integrated.

Specifically, we will (eventually) study: double integrals, triple integrals, line integrals, and surface integrals.

To motivate our constructions, we will begin by reviewing how the integral of a single variable is defined.

Single Variable Integrals

Recall. Given a function $f(x)$ on a closed interval $[a, b]$, the integral $\int_{a}^{b} f(x) d x$ is defined as the limit of Riemann sums. Specifically, we first subdivide $[a, b]$ into n subintervals:

$$
a=x_{0}<x_{1}<x_{2}<\cdots<x_{i-1}<x_{i}<\cdots<x_{n-1}<x_{n}=b
$$

We then form the Riemann sum $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}$, where:

$$
x_{i}^{*}=\text { sample point in the subinterval }\left[x_{i-1}, x_{i}\right],
$$

$$
\Delta x_{i}=x_{i}-x_{i-1} \text { is the length of }\left[x_{i-1}, x_{i}\right] .
$$

Finally, we take the limit as the size of the subdivisions tends to zero:

$$
\int_{a}^{b} f(x) d x=\lim _{\Delta x \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

where $\Delta x=\max _{1 \leq i \leq n} \Delta x_{i}$ is the maximum size of the subdivisions.

We say that f is integrable provided this limit exists (and is independent of the choices made in its construction).

We can visually represent each term $f\left(x_{i}^{*}\right) \Delta x_{i}$ in the Riemann sum as the (signed) area of a rectangle that approximately sits between the graph $y=f(x)$ and the x-axis.

The total Riemann sum therefore represents the approximate (signed) area between $y=f(x)$ and the x-axis.

As the rectangles become smaller (i.e. $n \rightarrow \infty$), the approximation becomes better and better, and we arrive at the interpretation

$$
\begin{aligned}
\int_{a}^{b} f(x) d x= & \text { (Area below } y=f(x) \text { and above the } x \text {-axis) } \\
& -(\text { Area above } y=f(x) \text { and below the } x \text {-axis })
\end{aligned}
$$

Double Integrals

We would like to mimic the procedure above for a function $f(x, y)$ with domain $D \subset \mathbb{R}^{2}$.

For simplicity, we begin by assuming that $D=R$ is a rectangle with its sides parallel to the coordinate axes:

$$
R=[a, b] \times[c, d] .
$$

We subdivide R into smaller rectangles by simultaneously subdividing the intervals $[a, b]$ and $[c, d]$:

$$
\begin{gathered}
a=x_{0}<x_{1}<x_{2}<\cdots<x_{i-1}<x_{i}<\cdots<x_{m-1}<x_{m}=b \\
c=y_{0}<y_{1}<y_{2}<\cdots<y_{j-1}<y_{j}<\cdots<y_{n-1}<y_{n}=d .
\end{gathered}
$$

We let $R_{i j}$ denote the subrectangle in the (i, j) position. Notice that:

- There are $m n$ total subrectangles $R_{i j}$.
- The area of $R_{i j}$ is $\Delta A_{i j}=\Delta x_{i} \Delta y_{j}=\left(x_{i}-x_{i-1}\right)\left(y_{j}-y_{j-1}\right)$.

Choosing a sample point $\left(x_{i}^{*}, y_{j}^{*}\right)$ in each $R_{i j}$, we build the Riemann sum

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta A_{i j}=\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta x_{i} \Delta y_{j}
$$

Finally, we let the sizes of the subdivisions tend to zero and define

$$
\iint_{R} f(x, y) d A=\lim _{\Delta x, \Delta y \rightarrow 0} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta A_{i j}
$$

where $\Delta x=\max _{1 \leq i \leq m} \Delta x_{i}$ and $\Delta y=\max _{1 \leq j \leq n} \Delta y_{j}$.
We say that f is integrable provided this limit exists (and is independent of our choices).

Interpreting Double Integrals

The values $f\left(x_{i}^{*}, y_{j}^{*}\right)$ represent heights on the graph $z=f(x, y)$ above the sample points $\left(x_{i}^{*}, y_{j}^{*}\right)$.

The terms $f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta A_{i j}$ of the Riemann sum therefore represent the (signed) volumes of rectangular prisms inserted between $z=f(x, y)$ and the $x y$-plane.

The total Riemann sum therefore represents the approximate (signed) volume between $z=f(x, y)$ and the $x y$-plane.

See Maple diagram.

It follows that the double integral is a "signed" volume:

$$
\begin{aligned}
\iint_{R} f(x, y) d A= & (\text { Volume below } z=f(x, y) \text { and above } R) \\
& -(\text { Volume above } z=f(x, y) \text { and below } R) .
\end{aligned}
$$

We can use this interpretation to help us compute the values of double integrals.

Example 1

If $f(x, y)=k$ (constant), evaluate $\iint_{R} f d A$.

Solution. The graph of $z=k$ is a horizontal plane (parallel to the $x y$-plane).

The region between the graph and R is therefore a rectangular solid.

Thus

$$
\iint_{R} k d A=\text { height } \times \text { area of } R=k \cdot \operatorname{Area}(R) .
$$

Remark. Compare this to the single variable result

$$
\int_{a}^{b} k d x=k(b-a)=k \cdot \text { Length }([a, b]) .
$$

Example 2

Compute $\iint_{R} 2-x d A$, where $R=[0,2] \times[0,3]$.

Solution. The graph $z=2-x$ is a plane parallel to the y-axis:

The integral therefore represents the volume of a triangular prism:

$$
\begin{aligned}
\iint_{R} 2-x d A & =\text { area of triangular face } \times \text { width } \\
& =\left(\frac{1}{2} \cdot 2 \cdot 2\right) \cdot 3=6 .
\end{aligned}
$$

Example 3

Compute $\iint_{R} 2-x^{2}-y^{2} d A$, where $R=[-1,1] \times[-1,1]$.

Solution. The graph $z=2-x^{2}-y^{2}$ is a downward opening paraboloid.

The integral therefore represents the volume of a parabolic "tent."
See Maple diagram.
To compute the volume we appeal to Cavalieri's Principle, which asserts that volume is the integral of cross-sectional area.

The area of a cross section of the tent perpendicular to the y-axis is given by

$$
\begin{aligned}
A(y) & =\int_{-1}^{1} 2-x^{2}-y^{2} d x=2 x-\frac{x^{3}}{3}-\left.x y^{2}\right|_{x=-1} ^{x=1} \\
& =\left(2-\frac{1}{3}-y^{2}\right)-\left(-2+\frac{1}{3}+y^{2}\right)=\frac{10}{3}-2 y^{2}
\end{aligned}
$$

The value of the double integral is therefore

$$
\begin{aligned}
& \iint_{R} 2-x^{2}-y^{2} d A=\int_{-1}^{1} A(y) d y=\int_{-1}^{1} \frac{10}{3}-2 y^{2} d y \\
&=\frac{10}{3} y-\left.\frac{2}{3} y^{3}\right|_{-1} ^{1}=\left(\frac{10}{3}-\frac{2}{3}\right)-\left(-\frac{10}{3}+\frac{2}{3}\right)=\frac{16}{3}
\end{aligned}
$$

Remark. Notice that if we had simply substituted in the integral expression for $A(y)$, we would have had

$$
\begin{aligned}
\iint_{R} 2-x^{2}-y^{2} d A & =\int_{-1}^{1} A(y) d y=\int_{-1}^{1}\left(\int_{-1}^{1} 2-x^{2}-y^{2} d y\right) d x \\
& =\int_{-1}^{1} \int_{-1}^{1} 2-x^{2}-y^{2} d y d x
\end{aligned}
$$

Iterated Integrals and Fubini's Theorem

Such an expression is called an iterated integral. The following result tells us that double integrals can always be expressed as iterated integrals.

Theorem 1 (Fubini)

If $f(x, y)$ is integrable on $R=[a, b] \times[c, d]$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

Remarks.

- Iterated integrals are always evaluated inside to outside.
- Notice that Fubini's theorem tells us that the order of integration doesn't matter.

Examples

Remark. Before proceeding to our examples, we note that all continuous functions are necessarily integrable, so that Fubini's theorem automatically applies to their integrals.

Example 4

If $R=[0, \pi / 2] \times[0, \pi]$, evaluate $\iint_{R} \sin (x+2 y) d A$.
Solution. By Fubini's theorem we have

$$
\begin{aligned}
\iint_{R} \sin (x+2 y) d A & =\int_{0}^{\pi / 2} \int_{0}^{\pi} \sin (x+2 y) d y d x \\
& =\left.\int_{0}^{\pi / 2} \frac{-\cos (x+2 y)}{2}\right|_{y=0} ^{y=\pi} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\pi / 2} \frac{\cos x}{2}-\frac{\cos (x+2 \pi)}{2} d x \\
& =\int_{0}^{\pi / 2} \frac{\cos x}{2}-\frac{\cos x}{2} d x=\int_{0}^{\pi / 2} 0 d x=0
\end{aligned}
$$

Example 5

If $R=[-1,2] \times[1,3]$, evaluate $\iint_{R} x^{2} y+x+y d A$.

Solution. By Fubini's theorem we have

$$
\iint_{R} x^{2} y+x+y d A=\int_{-1}^{2} \int_{1}^{3} x^{2} y+x+y d y d x
$$

$$
\begin{gathered}
\int_{-1}^{2} \int_{1}^{3} x^{2} y+x+y d y d x=\int_{-1}^{2} \frac{x^{2} y^{2}}{2}+x y+\left.\frac{y^{2}}{2}\right|_{y=1} ^{y=3} d x \\
=\int_{-1}^{2}\left(\frac{9 x^{2}}{2}+3 x+\frac{9}{2}\right)-\left(\frac{x^{2}}{2}+x+\frac{1}{2}\right) d x \\
=\int_{-1}^{2} 4 x^{2}+2 x+4 d x=\frac{4 x^{3}}{3}+x^{2}+\left.4 x\right|_{-1} ^{2} \\
=\left(\frac{32}{3}+4+8\right)-\left(-\frac{4}{3}+1-4\right)=27
\end{gathered}
$$

\square

A function $f(x, y)$ is called separable if $f(x, y)=g(x) h(y)$. Notice that in this case

$$
\begin{aligned}
\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x & =\int_{a}^{b}\left(\int_{c}^{d} g(x) h(y) d y\right) d x \\
& =\int_{a}^{b} g(x)\left(\int_{c}^{d} h(y) d y\right) d x \\
& =\left(\int_{c}^{d} h(y) d y\right)\left(\int_{a}^{b} g(x) d x\right) .
\end{aligned}
$$

That is, the double integral is simply the product of two single-variable integrals.

This can simplify some double integral computations.

Example 6

Evaluate $\iint_{R} x^{3} e^{y^{2}} d A$, where $R=[-1,1] \times[0,2]$.
Solution. By Fubini's theorem we have

$$
\begin{aligned}
\iint_{R} x^{3} e^{y^{2}} d A & =\int_{-1}^{1} \int_{0}^{2} x^{3} e^{y^{2}} d y d x \\
& =\left(\int_{-1}^{1} x^{3} d x\right)\left(\int_{0}^{2} e^{y^{2}} d y\right)
\end{aligned}
$$

since the integrand is separable. Because x^{3} is an odd function and the interval $[-1,1]$ is symmetric about 0 ,

$$
\left(\int_{-1}^{1} x^{3} d x\right)\left(\int_{0}^{2} e^{y^{2}} d y\right)=0 \cdot \int_{0}^{2} e^{y^{2}} d y=0
$$

Although the order of integration in an iterated integral doesn't matter in principle, in practice it can be rather important.

Example 7

Evaluate the iterated integral $\int_{0}^{1} \int_{0}^{2} x y e^{x^{2} y} d y d x$

Solution. If we proceed naïvely and simply integrate by parts in y, we find that

$$
\int_{0}^{1} \int_{0}^{2} x y e^{x^{2} y} d y d x=\int_{0}^{1} \frac{\left(2 x^{2}-1\right) e^{2 x^{2}}+1}{x^{3}} d x
$$

This is a rather difficult integral which can be evaluated using power series, for instance.

Because the integrand is continuous, Fubini's theorem, however, guarantees that

$$
\int_{0}^{1} \int_{0}^{2} x y e^{x^{2} y} d y d x=\iint_{R} x y e^{x^{2} y} d A=\int_{0}^{2} \int_{0}^{1} x y e^{x^{2} y} d x d y
$$

where $R=[0,1] \times[0,2]$.
That is, we are free to reverse the order of integration.
The simple substitution $u=x^{2} y$ (in x) then yields

$$
\begin{aligned}
\int_{0}^{2} \int_{0}^{1} x y e^{x^{2} y} d x d y & =\left.\frac{1}{2} \int_{0}^{2} e^{x^{2} y}\right|_{x=0} ^{x=1} d y=\frac{1}{2} \int_{0}^{2} e^{y}-1 d y \\
& =\frac{1}{2}\left(e^{y}-\left.y\right|_{0} ^{2}\right)=\frac{e^{2}-3}{2}
\end{aligned}
$$

