
Double Integrals over General Regions

Ryan C. Daileda

Trinity University

Calculus III

Daileda Double Integrals



Introduction

In Calculus I we only integrate over closed intervals, because these
are the connected subsets of R.

The connected subsets of R2 aren’t nearly as simple, which makes
integration in two variables more complicated.

We have seen how to integrate over rectangles whose sides are
parallel to the coordinate axes, by thinking in terms of cross
sections.

We can apply the same reasoning to express double integrals over
more general regions as iterated integrals with variable limits.
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Fubini’s Theorem

Recall. If f (x , y) is integrable on a rectangle R = [a, b]× [c , d ],
then:

a b

c

d

x

y

∫∫

R

f (x , y) dA

=

∫ b

a

∫ d

c

f (x , y) dy

︸ ︷︷ ︸
cross section
⊥ to x-axis

dx

=

∫ d

c

∫ b

a

f (x , y) dx

︸ ︷︷ ︸
cross section
⊥ to y-axis

dy

Daileda Double Integrals



Type I Regions

A Type I region has the form:

a bx

y g
1

y=g (  )x
2

y A cross section argument yields:

∫∫

D

f (x , y) dA

=

∫ b

a

∫ g2(x)

g1(x)
f (x , y) dy

︸ ︷︷ ︸
cross section
⊥ to x-axis

dx
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Type II Regions

A Type II region has the form:

c

d

x

(  )yy

A cross section argument yields:

∫∫

D

f (x , y) dA

=

∫ d

c

∫ h2(y)

h1(y)
f (x , y) dx

︸ ︷︷ ︸
cross section
⊥ to y-axis

dy
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Examples

Example 1

Evaluate

∫∫

D

x cos y dA, where D is the region bounded by y = 0,

y = x2 and x = 1.

Solution. First we sketch the region D:

This is Type I with “bottom”
curve y = 0 and “top” curve
y = x2.

It is also Type II, with “left side”
x =

√
y and “right side” x = 1.
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We choose to treat it as Type I to avoid introducing radicals. Thus

∫∫

D

x cos y dA =

∫ 1

0

∫ x2

0
x cos y dy dx

=

∫ 1

0
x sin y

∣
∣
∣
∣

y=x2

y=0

dx

=

∫ 1

0
x sin x2 dx

=
− cos(x2)

2

∣
∣
∣
∣

1

0

=
1− cos 1

2
.
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Example 2

Evaluate

∫∫

y3 dA, where D is the triangular region with vertices

(0, 2), (1, 1) and (3, 2).

Solution. First we sketch the region D:

This is Type II with “left side”
x = 2− y and “right side” x =
2y − 1.

It is also Type I, but the “bot-
tom” curve is defined piecewise.
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To avoid splitting the integral, we therefore choose to treat D as a
Type II region:

∫∫

D

y3 dA =

∫ 2

1

∫ 2y−1

2−y

y3 dx dy

=

∫ 2

1
xy3
∣
∣
∣
∣

x=2y−1

x=2−y

dy

=

∫ 2

1
y3(2y − 1− (2− y)) dy

= 3

∫ 2

1
y4 − y3 dy = 3

(

y5

5
− y4

4

∣
∣
∣
∣

2

1

)

= 3

(
32

5
− 16

4
− 1

5
+

1

4

)

=
147

20
.
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Example 3

Find the volume of the tetrahedron with vertices (A, 0, 0),
(0,B , 0), (0, 0,C ) and (0, 0, 0) (with A,B ,C > 0).

Solution. First let’s sketch the tetrahedron:

C

y

A

z

B

x

We want the volume under the
plane and above the bottom tri-
angular face.

By guess-and-check (or other-
wise) we find that the plane is
given by

x

A
+

y

B
+

z

C
= 1.
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So we must compute

∫∫

D

C
(

1− x

A
− y

B

)

dA where D is:

B

x

y

A

The line is given by setting
z = 0 in the plane equation:

x

A
+

y

B
= 1.

This is Type I with
“bottom” curve y = 0 and
“top” curve y = B

(
1− x

A

)
.
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So the volume is

C

∫ A

0

∫ B(1−x/A)

0
1− x

A
− y

B
dy dx

= C

∫ A

0
y − xy

A
− y2

2B

∣
∣
∣
∣

y=B(1−x/A)

y=0

dx

= C

∫ A

0
B
(

1− x

A

)

− x

A
B
(

1− x

A

)

− 1

2B
B2
(

1− x

A

)2
dx

=
BC

2

∫ A

0

(

1− x

A

)2
dx =

BC

2

(−A

3

)(

1− x

A

)3
∣
∣
∣
∣

A

0

=
ABC

6
.
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Example 4

Evaluate

∫ 1

0

∫ 3

3y
ex

2
dx dy .

Solution. We cannot integrate in the order given since ex
2
does

not have an elementary antiderivative.

However, the iterated integral is equal to

∫∫

D

ex
2
dA, where D is:

The line on the top/left is
x = 3y or y = x/3.
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Treating this instead as a Type I integral we have

∫ 1

0

∫ 3

3y
ex

2
dx dy =

∫ 3

0

∫ x/3

0
ex

2
dy dx

=
1

3

∫ 3

0
xex

2
dx

=
1

6
ex

2

∣
∣
∣
∣

3

0

=
e9 − 1

6
.

Remark. Note that although it is “impossible” to integrate ex
2

with respect to x , it is trivial to integrate it with respect to y !
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Example 5

Evaluate

∫ 1

0

∫ π

2

arcsin y
cos x

√

1 + cos2 x dx dy .

Solution. Once again we are faced with an “impossible” Type II
integral.

So we sketch the region of integration and reverse the order:

The top/left curve is
x = arcsin y or y = sin x .

The right edge is x = π/2.
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When expressed as a Type I integral we have

∫ 1

0

∫ π

2

arcsin y
cos x

√

1 + cos2 x dx dy

=

∫ π/2

0

∫ sin x

0
cos x

√

1 + cos2 x dy dx

=

∫ π/2

0
sin x cos x

√

1 + cos2 x dx

(
u = 1 + cos2 x

du = −2 sin x cos x dx

)

= −1

2

∫ 1

2

√
u du

=
1

2

∫ 2

1

√
u du =

1

2

u3/2

3/2

∣
∣
∣
∣

2

1

=
23/2 − 1

3
.
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Example 6

Evaluate

∫∫

D

2− x2 − y2 dA, where D is the square with vertices

(±1, 0) and (0,±1).

Solution. First we sketch the domain D:

This is both Type I and Type
II, but no matter how we treat
it, the edges will be piecewise
defined.

This means our inner integral
will have to be broken in half.
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However, if we consider the shape of z = 2− x2 − y2, we see that
the volume computed by the integral is just 4 times the volume in
the first octant.

That is

∫∫

D

2− x2 − y2 dA = 4

∫ 1

0

∫ 1−x

0
2− x2 − y2 dy dx

= 4

∫ 1

0
2y − x2y − y3

3

∣
∣
∣
∣

y=1−x

y=0

dx

= 4

∫ 1

0
2(1− x)− x2(1− x)− (1− x)3

3
dx

= 4

∫ 1

0

4

3
x3 − 2x2 − x +

5

3
dx
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= 4

(
1

3
x4 − 2

3
x3 − 1

2
x2 +

5

3
x

) ∣
∣
∣
∣

1

0

=
10

3
.

Remark. If we had decided to treat the entire region as Type I,
say, we would have gotten the iterated integral

∫ 1

−1

∫ 1−|x |

|x |−1
2− x2 − y2 dy dx =

∫ 1

−1

8

3
x2 |x | − 4 x2 − 2 |x |+ 10

3
dx

= 2

∫ 1

0

8

3
x3 − 4x2 − 2x +

10

3
dx = 2

(
2

3
x4 − 4

3
x3 − x2 +

10

3
x

) ∣
∣
∣
∣

1

0

= 2

(
2

3
− 4

3
− 1 +

10

3

)

=
10

3
,

as expected. Here we have used the fact that
8
3 x

2 |x | − 4 x2 − 2 |x |+ 10
3 is an even function.
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