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Introduction

Today we will formally introduce polar coordinates.

After giving the fundamental relationships between rectangular and
polar coordinates, our first task will be to determine how to
express a double integral using polar coordinates.

Converting a double integral to polar coordinates can be viewed as
a 2D version of u-substitution.

At the end of the lecture we will use polar coordinates to help us
find the area underneath the “bell curve” y = e−x2 .
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Polar Coordinates

Let P ∈ R
2. The rectangular coordinates (x , y) of P describe its

position relative to the coordinate axes.

Let θ denote the (counterclockwise) angle between the x-axis and
the line segment connecting O to P , and let r be the distance
from P to O.

x

yr

θ

x = r cos θ,

y = r sin θ,

x2 + y2 = r2.

We can also describe the position of P using (r , θ), and we call
these the polar coordinates of P .

Daileda Polar Coordinates



Remarks

Note that r ≥ 0, and r = 0 if and only if P = O.

The equation r = k represents a circle around the origin of radius
k .

The inequality a ≤ r ≤ b represents an annulus centered at O with
radii a and b.

The equation θ = k represents a ray from O.

The inequality α ≤ θ ≤ β represents an infinite sector centered at
O.
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The region D described by the polar inequalities a ≤ r ≤ d and
α ≤ θ ≤ β is a sector of an annulus (a polar rectangle):

a b

x

y

α

βD

Note that the area of D is

π(b2 − a2)
β − α

2π
=

b + a

2
(b − a)(β − α).
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Suppose we are given a function f (x , y) on D. We seek to express
∫∫

D

f (x , y) dA in polar coordinates.

Subdivisions

a = r0 < r1 < r2 < · · · < rm = b,

α = θ0 < θ1 < θ2 < · · · < θn = β,

in r and θ cut D into mn polar subrectangles

ri−1 ≤ r ≤ ri , θj−1 ≤ θ ≤ θj ,

each with area

ri + ri−1

2
(ri − ri−1)(θj − θj−1) =

ri + ri−1

2
∆ri ∆θj = ∆Aij .
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Let Pij be the center of the ij subdivision.

Then Pij has polar coordinates (r
∗

i , θ
∗

j ) =
(

ri+ri−1

2
,
θj+θj−1

2

)

.

The Riemann sum corresponding to this subdivision with sample
points Pij is

m
∑

i=1

n
∑

j=1

f (Pij )∆Aij =

m
∑

i=1

n
∑

j=1

f (r∗i cos θ
∗

i , r
∗

i sin θ
∗

i )
ri + ri−1

2
∆ri ∆θj

=
m
∑

i=1

n
∑

j=1

f (r∗i cos θ
∗

i , r
∗

i sin θ
∗

i )r
∗

i ∆ri ∆θj
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As ∆r ,∆θ → 0, the LHS converges to

∫∫

D

f (x , y) dA,

while the RHS converges to

∫ β

α

∫ b

a

f (r cos θ, r sin θ) r dr dθ.

Thus:

Theorem 1 (Integration in Polar Coordinates)

If D denotes the polar rectangle a < r < b, α < θ < β, and if

f (x , y) is integrable on D, then

∫∫

D

f (x , y) dA =

∫ β

α

∫ b

a

f (r cos θ, r sin θ) r dr dθ.
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Remarks

Theorem 1 states that if we make the change of variables
(substitution)

x = r cos θ, y = r sin θ,

then we can formally substitute in the integral, provided we
take

dA = dx dy = r dr dθ.

The extra r appearing in the differential is called the Jacobian

of the polar coordinate transformation.

Forgetting to include the Jacobian when converting an integral
to polar coordinates will almost certainly ruin one’s day.
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Examples

Example 1

Evaluate

∫∫

D

xy dA, where D is the portion of x2 + y2 ≤ 9 in the

first quadrant.

Solution. The region D is a quarter of a disk, which is given by the
polar inequalities

0 ≤ r ≤ 3, 0 ≤ θ ≤ π

2
.

This is a polar rectangle, so we have

∫∫

D

xy dA =

∫ π/2

0

∫ 3

0

(r cos θ)(r sin θ)r dr dθ
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Because the limits are constants and the integrand is separable, we
have

∫ π/2

0

sin θ cos θ dθ ×
∫ 3

0

r3 dr =

(

sin2 θ

2

∣

∣

∣

∣

π/2

0

)(

r4

4

∣

∣

∣

∣

3

0

)

=
1

2
· 81
4

=
81

8
.

Example 2

Evaluate

∫∫

D

cos(x2 + y2) dA, where D is the portion of the

annulus 1 ≤ x2 + y2 ≤ 4 that lies above the x-axis.

Remark. This would be extremely difficult to evaluate in
rectangular coordinates (why?).
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Solution. The annulus is described in polar coordinates by
1 ≤ r ≤ 2 and 0 ≤ θ ≤ π, which is a polar rectangle.

Therefore

∫∫

D

cos(x2 + y2) dA =

∫ π

0

∫ 2

1

cos(r2) r dr dθ

=

∫ π

0

dθ ×
∫ 2

1

r cos(r2) dr

= π

(

sin(r2)

2

∣

∣

∣

∣

2

1

)

= π

(

sin(4)− sin(1)

2

)

=
π

2
(sin(4)− sin(1)) .
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Example 3

Evaluate

∫∫

D

y2

x2
dA, where

D = {(x , y) | 4 ≤ x2 + y2 ≤ 9, |y | ≤ x}.

Solution. The region D is an annular sector with 2 ≤ r ≤ 3 and
−π

4
≤ θ ≤ π

4
.

Thus
∫∫

D

y2

x2
dA =

∫ π/4

−π/4

∫ 3

2

r2 sin2 θ

r2 cos2 θ
r dr dθ

=

∫ π/4

−π/4

sin2 θ

cos2 θ
dθ ×

∫ 3

2

r dr

=

∫ π/4

−π/4

1− cos2 θ

cos2 θ
dθ ×

(

r2

2

∣

∣

∣

∣

3

2

)
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=
5

2

∫ π/4

−π/4
sec2 θ − 1 dθ =

5

2

(

tan θ − θ

∣

∣

∣

∣

π/4

−π/4

)

=
5

2

(

1− π

4
−
(

−1 +
π

4

))

=
5

2

(

2− π

2

)

=
5(4− π)

4
.

Example 4

Evaluate
∫∫

D
y dA, where D is the region between the circles

x2 + y2 = 4 and (x − 1)2 + y2 = 1 in the first quadrant.

Solution. We first express both circles in polar coordinates. The
larger circle is just r = 2.
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For the smaller we have

(x − 1)2 + y2 = 1 ⇒ x2 − 2x + 1 + y2 = 1

⇒ x2 + y2 = 2x

⇒ r2 = 2r cos θ

⇒ r = 2cos θ.

Radial cross sections begin at r = 2cos θ and end at r = 2, as θ
varies from 0 to π/2.

So this is a polar Type I region:

∫∫

D

y dA =

∫ π/2

0

∫ 2

2 cos θ
r sin θ r dr dθ

=

∫ π/2

0

r3 sin θ

3

∣

∣

∣

∣

r=2

r=2 cos θ

dθ
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=
8

3

∫ π/2

0

sin θ − sin θ cos3 θ dθ =
8

3

∫ π/2

0

(1− cos3 θ) sin θ dθ

(

u = cos θ

du = − sin θ dθ

)

=
8

3

∫ 0

1

1− u3(−du) =
8

3

∫ 1

0

1− u3 du

=
8

3

(

u − u4

4

∣

∣

∣

∣

1

0

)

= 2 .

Example 5

Compute the area enclosed by one loop of the polar curve
r = cos 3θ.
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Solution. If D denotes the region enclosed by the curve, then

Area(D) =

∫∫

D

dA =

∫ β

α

∫ cos 3θ

0

r dr dθ,

where α and β are the values of θ for which r = cos 3θ = 0.

We have

cos 3θ = 0 ⇔ 3θ = ± π

2
, ± 3π

2
, ± 5π

2
, . . .

⇔ θ = ± π

6
, ± π

2
, ± 5π

6
, . . .

The first loop is given by −π/6 ≤ θ ≤ π/6.
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Therefore the area is

∫ π/6

−π/6

∫ cos 3θ

0

r dr dθ =

∫ π/6

−π/6

r2

2

∣

∣

∣

∣

r=cos 3θ

r=0

dθ

=
1

2

∫ π/6

−π/6
cos2 3θ dθ

=
1

2

∫ π/6

−π/6

1 + cos 6θ

2
dθ

=
1

4

(

θ +
sin 6θ

12

∣

∣

∣

∣

π/6

−π/6

)

=
1

4
· 2π
6

=
π

12
.
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Example 6

Find the area underneath the curve y = e−x2 and the x-axis.

Solution. The area is given by the (improper) integral

A =

∫

∞

−∞

e−x2 dx =

∫

∞

−∞

e−y2

dy .

We cannot evaluate this using FTOC, so we work indirectly.
Notice that

A2 =

(
∫

∞

−∞

e−x2 dx

)(
∫

∞

−∞

e−y2

dy

)

=

∫

∞

−∞

∫

∞

−∞

e−x2−y2

dx dy
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By Fubini’s theorem, this is equal to

∫∫

R2

e−x2−y2

dA =

∫ 2π

0

∫

∞

0

e−r2 r dr dθ

= 2π

∫

∞

0

re−r2 dr

= −π

(

e−r2
∣

∣

∣

∣

∞

0

)

= −π(0− 1) = π.

Thus
∫

∞

−∞

e−x2 dx = A =
√
π .

Daileda Polar Coordinates


