# Points in $\mathbb{R}^{2}$ and $\mathbb{R}^{3}$ 

Ryan C. Daileda



Trinity University

## Calculus III

## Introduction

In Calculus I and II one studies "smooth" (continuous, differentiable, etc.) functions of a single (real) variable.

In Calculus III we will study (smooth) functions of several (real) variables.

We may regard the inputs/outputs of such functions as points in multidimensional Euclidean space.

We will therefore begin our course with a discussion of the Euclidean space $\mathbb{R}^{n}$.

## Definitions and Notation

$\underline{\mathbb{R}}$ : One-dimensional (Euclidean) space

- Analytically: the set of all real numbers
- Geometrically: the real line


The numerical value of $x$ gives its position on the line (relative to $0)$.
$\mathbb{R}^{2}$ : Two-dimensional (Euclidean) space

- Analytically: $\{(x, y) \mid x, y \in \mathbb{R}\}$, the set of all ordered pairs of real numbers
- Geometrically: points in a plane



## $\mathbb{R}^{3}$ : Three-dimensional (Euclidean) space

- Analytically: $\{(x, y, z) \mid x, y, z \in \mathbb{R}\}$, the set of all ordered triples of real numbers
- Geometrically: points in space

$$
(x, y, z) \in \mathbb{R}^{3}
$$



## Terminology of $\mathbb{R}^{3}$

- (Coordinate) Axes: The $x, y$ and $z$-axes.
- Origin: Where the axes intersect, $(0,0,0)$.
- Coordinate Planes: Planes formed by pairs of axes. Called the $x y, y z$ and $x z$-planes.
- Octants: The 8 regions of space cut off by the coordinate planes.


## Remarks

- The arrangement of axes we are using is called right-handed.
- Note that the $x$ and $y$-axes have the same relative orientation (when viewed from "above") as they do in $\mathbb{R}^{2}$.
- We will therefore frequently identify $\mathbb{R}^{2}$ with the $x y$-plane in $\mathbb{R}^{3}$.
- The octants have a standard numbering that we will almost never use. The first octant is shown in the diagram above.
- Negative coordinates occur in the various other octants, "behind" or "below" the coordinate planes.


## Generalized Euclidean Space

$\mathbb{R}^{n}: n$-dimensional (Euclidean) space

- Analytically: $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}\right.$ for all $\left.i\right\}$, the set of all $n$-tuples of real numbers
- Geometrically: difficult to visualize
- When $n$ is small, we usually avoid subscripts and just use extra variables, e.g. $(x, y, z, t) \in \mathbb{R}^{4}$.
- We will primarily be interested in $n=2,3$, but may encounter higher dimensions on occasion.


## Distances

The geometric concept of distance in Euclidean spaces has a straightforward analytic description.

$\mathbb{R}^{2}$ : If $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ are points in $\mathbb{R}^{2}$, the distance between them is

$$
d(P, Q)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

$\mathbb{R}^{3}$ : If $P=\left(x_{1}, y_{1}, z_{1}\right)$ and $Q=\left(x_{2}, y_{2}, z_{2}\right)$ are points in $\mathbb{R}^{3}$, the distance between them is

$$
d(P, Q)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}} .
$$

## Remarks.

- These formulae follow easily from the Pythagorean theorem.
- Distance in $\mathbb{R}$ fits this pattern as well. If $x_{1}, x_{2} \in \mathbb{R}$, then

$$
d\left(x_{1}, x_{2}\right)=\left|x_{1}-x_{2}\right|=\sqrt{\left(x_{1}-x_{2}\right)^{2}}
$$

## Distance in General

By analogy, the distance from $P=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to $Q=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ in $\mathbb{R}^{n}$ is defined to be

$$
d(P, Q)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}}
$$

If $n \geq 4$, then $n$-dimensional distance cannot be visualized.
Nonetheless it obeys the "standard" properties of distance, such as the triangle inequality,

$$
d(P, Q) \leq d(P, R)+d(R, Q)
$$

## More Remarks

- Distances are not always "simple" numbers and frequently involve radicals.
- For example, the distance from $P=(1,2,3)$ to $Q=(-3,1,0)$ is

$$
\begin{aligned}
d(P, Q) & =\sqrt{(1-(-3))^{2}+(2-1)^{2}+(3-0)^{2}} \\
& =\sqrt{16+1+9}=\sqrt{26} .
\end{aligned}
$$

- Although a calculator reports that $\sqrt{26}=5.0990$ (to four decimal places), the exact distance is the symbolic expression $\sqrt{26}$. The decimal expression 5.0990 is only an approximation.


## Equations and Graphs

Roughly speaking we know that:
"Nice" equations in $x, y$
(Equation E)

Curves in $\mathbb{R}^{2}$ (the xy-plane)
(Points that make $E$ true)

## Examples:

$$
x+y=3 \quad \longleftrightarrow
$$




## Equations in 3 Variables

In the same way we have a three-dimensional correspondence
"Nice" equations in $x, y, z$ $\longleftrightarrow$ Surfaces in $\mathbb{R}^{3}$ (xyz-space)

Examples: Consider the following equations in $x, y, z$ and describe their corresponding surfaces in $\mathbb{R}^{3}$.

- $z=0 \longleftrightarrow x y$-plane
- $y=0 \longleftrightarrow x z$-plane
- $x=0 \longleftrightarrow y z$-plane
- $z=-1 \longleftrightarrow x y$-plane shifted "down" one unit
- $x^{2}+y^{2}=1 \longleftrightarrow$ unit cylinder around $z$-axis
- $d(P,(x, y, z))=r \longleftrightarrow \begin{aligned} & \text { sphere of radius } r \text {, centered }\end{aligned}$

We can make the last example more explicit using the distance formula:

$$
\begin{aligned}
d(P,(x, y, z))=r & \Leftrightarrow \sqrt{(x-a)^{2}+(y-b)^{2}+(z-c)^{2}}=r \\
& \Leftrightarrow \underbrace{(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2}}_{\text {sphere, radius } r, \text { center }(a, b, c)}
\end{aligned}
$$

## Examples

Example: Find an equation for the sphere centered at $P=(1,2,3)$ that passes through $Q=(3,5,-3)$.

Solution: Because $Q$ is on the sphere, the radius must be

$$
\begin{aligned}
r & =d(P, Q)=\sqrt{(1-3)^{2}+(2-5)^{2}+(3-(-3))^{2}} \\
& =\sqrt{49}=7
\end{aligned}
$$

Since $P$ is the center, the equation must therefore be

$$
(x-1)^{2}+(y-2)^{2}+(z-3)^{2}=49
$$

Example: Determine the surface represented by the equation

$$
x^{2}+y^{2}+z^{2}+4 x-2 y+2 z+1=0
$$

Solution: We group terms with common variables and complete the squares:

$$
\begin{aligned}
\left(x^{2}+4 x\right)+\left(y^{2}-2 y\right)+\left(z^{2}+2 z\right)+1 & =0 \\
(x+2)^{2}-4+(y-1)^{2}-1+(z+1)^{2}-1+1 & =0
\end{aligned}
$$

Now collect all the constants on the RHS:

$$
(x+2)^{2}+(y-1)^{2}+(z+1)^{2}=5
$$

This is an equation for the sphere centered at $(-2,1,-1)$ with radius $\sqrt{5}$.

