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Introduction

We will now extend out theory of integration to functions of 3
variables.

The simplest generalization of our work so far is to integrate over
solid regions (3-manifolds) in R

3.

As before, we will begin with the simplest 3D solids, and then
move on to more general regions.

Triple integrals can be difficult to work with because they often
require careful 3D visualization.
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Triple Integrals over Rectangular Solids

Suppose we are given a function f (x , y , z) with domain

B = [a, b]× [c , d ]× [r , s],

a rectangular solid (a “box”).
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We introduce subdivisions

x0 = a < x1 < x2 < · · · < xℓ−1 < xℓ = b,

y0 = c < y1 < y2 < · · · < ym−1 < ym = d ,

z0 = r < z1 < z2 < · · · < zn−1 < zn = s,

and obtain rectangular subdivisions Bijk of B :

Bijk = [xi−1, xi ]× [yj−1, yj ]× [zk−1, zk ].
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We choose sample points P∗
ijk ∈ Bijk and form the Riemann sum

ℓ
∑

i=1

m
∑

j=1

n
∑

k=1

f (P∗
ijk)∆Vijk ,

where
∆Vijk = Volume of Bijk = ∆xi∆yj∆zk .

Finally we take the limit as the subdivisions shrink indefinitely:

lim
∆x ,∆y ,∆z→0

ℓ
∑

i=1

m
∑

j=1

n
∑

k=1

f (P∗
ijk)∆Vijk =

∫∫∫

B

f (x , y , z) dV .

We say that f is integrable when this limit exists (and is
independent of the choices involved).
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Interpreting the Triple Integral

Unfortunately

∫∫∫

B

f dV does not have a “generic” geometric

meaning.

The terms f (P∗
ijk)∆Vijk in the Riemann sum represent

4-dimensional “content,” which cannot be visualized.

However, if f represents the pointwise density throughout B , then:

f (P∗
ijk)∆Vijk is the approximate mass of Bijk .

∫∫∫

B

f dV is the total mass of B .
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If the subdivisions of B are uniform, then

∆Vijk = ∆V =
Volume of B

ℓmn
⇒ 1

ℓmn
=

∆V

V (B)
,

and the average value of f at the sample points P∗
ijk is

1

ℓmn

ℓ
∑

i=1

m
∑

j=1

n
∑

k=1

f (P∗
ijk) =

1

V (B)

ℓ
∑

i=1

m
∑

j=1

n
∑

k=1

f (P∗
ijk)∆V .

Taking the limit as ∆x ,∆y ,∆z → 0 we sample f “everywhere”
and find

Average value of f on B = f =
1

V (B)

∫∫∫

B

f dV .

This provides another interpretation of the triple integral.
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Fubini’s Theorem

As with double integrals, we can use a cross section argument to
show that triple integrals can be evaluated using iterated single
variable integrals.

Theorem 1

If f is integrable on B = [a, b]× [c , d ]× [r , s], then

∫∫∫

B

f (x , y , z) dV =

∫ s

r

∫ d

c

∫ b

a

f (x , y , z) dx dy dz

=

∫ b

a

∫ s

r

∫ d

c

f (x , y , z) dy dz dx = · · ·

(There are six possible orders.)
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Example 1

Evaluate

∫∫∫

B

xz − y3 dV , where B = [−1, 1] × [0, 2] × [0, 1].

Solution. There is no particularly advantageous order of
integration, so we simply choose

∫∫∫

B

xz−y3 dV =

∫ 1

−1

∫ 2

0

∫ 1

0
xz − y3 dz dy dx

=

∫ 1

−1

∫ 2

0

xz2

2
− y3z

∣

∣

∣

∣

z=1

z=0

dy dx

=

∫ 1

−1

∫ 2

0

x

2
− y3 dy dx =

∫ 1

−1

xy

2
− y4

4

∣

∣

∣

∣

y=2

y=0

dx
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=

∫ 1

−1
x − 4 dx =

x2

2
− 4x

∣

∣

∣

∣

1

−1

= −8 .

Remarks.

This result tells us that xz − y3 is predominantly negative
throughout B .

More precisely, the average value of xz − y3 in B is

1

V (B)

∫∫∫

B

xz − y3 dV =
1

2 · 2 · 1(−8) = − 2.

Daileda Triple Integrals



Triple Integrals Over General Regions

To integrate over a general solid region, we first divide it into
subregions that can be described by iterated inequalities.

We can use a cross section argument to express these subintegrals
as 3-variable iterated integrals.

We then appeal to the additivity of the integral: if E1 and E2 are
solids only sharing boundary points, then

∫∫∫

E1∪E2

f dV =

∫∫∫

E1

f dV +

∫∫∫

E2

f dV .
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Definition

We say that E ⊂ R
3 is of Type 1 if it has the form

E = {(x , y , z) |(x , y) ∈ D, u1(x , y) ≤ z ≤ u2(x , y)},

where D ⊂ R
2 is the projection of E into the xy -plane. In this case

∫∫∫

E

f (x , y , z) dV =

∫∫

D

∫ u2(x ,y)

u1(x ,y)
f (x , y , z) dz dA,

where dA = dx dy = dy dx .

A Type 1 region has a “bottom” surface given by z = u1(x , y),
and a “top” surface given by z = u2(x , y), both with domain D in
the xy -plane (see Maple diagram).
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Definition

We say that E ⊂ R
3 is of Type 2 if it has the form

E = {(x , y , z) |(y , z) ∈ D, u1(y , z) ≤ x ≤ u2(y , z)},

where D ⊂ R
2 is the projection of E into the yz-plane. In this case

∫∫∫

E

f (x , y , z) dV =

∫∫

D

∫ u2(y ,z)

u1(y ,z)
f (x , y , z) dx dA,

where dA = dy dz = dz dy .

A Type 2 region has a “back” surface given by x = u1(y , z), and a
“front” surface given by x = u2(y , z), both with domain D in the
yz-plane (see Maple diagram).
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Definition

We say that E ⊂ R
3 is of Type 3 if it has the form

E = {(x , y , z) |(x , z) ∈ D, u1(x , z) ≤ y ≤ u2(x , z)},

where D ⊂ R
2 is the projection of E into the xz-plane. In this case

∫∫∫

E

f (x , y , z) dV =

∫∫

D

∫ u2(x ,z)

u1(x ,z)
f (x , y , z) dy dA,

where dA = dx dz = dz dx .

A Type 3 region has a “left” surface given by y = u1(x , z), and a
“right” surface given by y = u2(x , z), both with domain D in the
xz-plane (see Maple diagram).
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Remarks

Fubini’s Theorem still holds for general regions: if E is of multiple

types,

∫∫∫

E

f dV can be computed using any order of integration.

A triple integral

∫∫∫

E

f dV can be very difficult to set up.

One first needs to identify the type of E and the relevant
“sides” to determine the innermost variable and limits of
integration.

Then one needs to project E into the plane of the remaining
variables and set up a double integral over that region.

When f ≡ 1, the terms in the Riemann sums are simply volumes,

so that

∫∫∫

E

dV = Volume of E .
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Examples

Example 2

Compute

∫∫∫

E

z dV where E is the solid region bounded by

z = 1− x2 − y2 and z = −3.

Solution. The paraboloid z = 1− x2 − y2 lies above z = −3 where

1− x2 − y2 ≥ −3 ⇔ x2 + y2 ≤ 4.

So E is a Type 1 region with “bottom” z = −3, “top”
z = 1− x2 − y2 and xy -projection

D = {(x , y) | x2 + y2 ≤ 4}.

See Maple diagram.
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Thus
∫∫∫

E

z dV =

∫∫

D

∫ 1−x2−y2

−3
z dz dA.

Because the outer integral is over a disk centered at the origin, we
can easily describe it using polar coordinates:

∫∫

D

∫ 1−x2−y2

−3
z dz dA =

∫ 2π

0

∫ 2

0

∫ 1−r2

−3
zr dz dr dθ

=

∫ 2π

0

∫ 2

0

rz2

2

∣

∣

∣

∣

z=1−r2

z=−3

dr dθ =
1

2

∫ 2π

0

∫ 2

0
r(1− r2)2 − 9r dr dθ

=
1

2

∫ 2π

0

(1− r2)3

−6
− 9r2

2

∣

∣

∣

∣

r=2

r=0

dθ = π

(

9

2
− 18 +

1

6

)

=
−40π

3
.
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Example 3

Find the volume of the region E enclosed by the parabolic cylinder
z = 3− y2 and the planes z = 0, x + y + z = 5 and x − y = −7.

Solution. The plane z = 0 cuts the cylinder z = 3− y2 into a
“parabolic tube” along the x-axis.

The planes x + y + z = 5 and x − y = −7 intersect the x-axis at
x = 5 and x = −7, respectively.

Therefore x = 5− y − z forms the “front” of E , while x = y − 7
forms the “back.”

Thus E is a Type 2 region. See Maple diagram.
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The projection of E into the yz-plane is the parabolic region D
bounded by z = 0 and z = 3− y2, which is of Type I.

Thus

Volume(E ) =

∫∫∫

E

dV =

∫∫

D

∫ 5−y−z

y−7
dx dA

=

∫

√
3

−
√
3

∫ 3−y2

0

∫ 5−y−z

y−7
dx dz dy =

∫

√
3

−
√
3

∫ 3−y2

0
12− 2y − z dz dy

=

∫

√
3

−
√
3
(12 − 2y)z − z2

2

∣

∣

∣

∣

z=3−y2

z=0

dy

=

∫

√
3

−
√
3
(12 − 2y)(3− y2)− (3− y2)2

2
dy
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=

∫

√
3

−
√
3

−y4

2
+ 2y3 − 9y2 − 6y +

63

2
dy

= 2

∫

√
3

0
−y4

2
− 9y2 +

63

2
dy =

∫

√
3

0
−y4 − 18y2 + 63 dy

=
−y5

5
− 6y3 + 63y

∣

∣

∣

∣

√
3

0

=
−9

√
3

5
− 18

√
3 + 63

√
3

=
216

5

√
3 .
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Example 4

Rewrite the integral

∫ 1

0

∫ 1

√
x

∫ 1−y

0
f (x , y , z) dz dy dx in all five

other orders of integration.

Solution. The given iterated integral represents an integral over a
Type 1 region E ⊂ R

3 bounded above by the plane z = 1− y and
below by the plane z = 0.

The xy -projection D of E is a Type I region bounded on the
bottom by the parabola y =

√
x (x = y2) and on the top by the

horizontal line y = 1, running from x = 0 to x = 1.
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As a Type II region, D is bounded on the left by x = 0 and on the
right byx = y2, with 0 ≤ y ≤ 1.

x

yy =1

Thus

∫∫∫

E

f (x , y , z) dV =

∫ 1

0

∫ y2

0

∫ 1−y

0
f (x , y , z) dz dx dy .
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As a Type 2 region, the “back” of E is x = 0, while the “front” is
x = y2.

y

z

z=1-y

The yz-projection of E is a triangle in the first quadrant. Thus

∫∫∫

E

f (x , y , z) dV =

∫ 1

0

∫ 1−y

0

∫ y2

0
f (x , y , z) dx dz dy

=

∫ 1

0

∫ 1−z

0

∫ y2

0
f (x , y , z) dx dy dz .
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As a Type 3 region, the “left side” of E is y =
√
x , while the

“right side” is y = 1− z .

x

z

x=(1-  )z
2

The xz-projection of E is bounded by x = y2 = (1− z)2. Thus

∫∫∫

E

f (x , y , z) dV =

∫ 1

0

∫ 1−
√
x

0

∫ 1−z

√
x

f (x , y , z) dy dz dx

=

∫ 1

0

∫ (1−z)2

0

∫ 1−z

√
x

f (x , y , z) dy dx dz .
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