Triple Integrals

Ryan C. Daileda

Trinity University
Calculus III

Introduction

We will now extend out theory of integration to functions of 3 variables.

The simplest generalization of our work so far is to integrate over solid regions (3-manifolds) in \mathbb{R}^{3}.

As before, we will begin with the simplest 3D solids, and then move on to more general regions.

Triple integrals can be difficult to work with because they often require careful 3D visualization.

Triple Integrals over Rectangular Solids

Suppose we are given a function $f(x, y, z)$ with domain

$$
B=[a, b] \times[c, d] \times[r, s],
$$

a rectangular solid (a "box").

We introduce subdivisions

$$
\begin{aligned}
& x_{0}=a<x_{1}<x_{2}<\cdots<x_{\ell-1}<x_{\ell}=b \\
& y_{0}=c<y_{1}<y_{2}<\cdots<y_{m-1}<y_{m}=d \\
& z_{0}=r<z_{1}<z_{2}<\cdots<z_{n-1}<z_{n}=s
\end{aligned}
$$

and obtain rectangular subdivisions $B_{i j k}$ of B :

$$
B_{i j k}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right] \times\left[z_{k-1}, z_{k}\right] .
$$

We introduce subdivisions

$$
\begin{aligned}
& x_{0}=a<x_{1}<x_{2}<\cdots<x_{\ell-1}<x_{\ell}=b \\
& y_{0}=c<y_{1}<y_{2}<\cdots<y_{m-1}<y_{m}=d \\
& z_{0}=r<z_{1}<z_{2}<\cdots<z_{n-1}<z_{n}=s
\end{aligned}
$$

and obtain rectangular subdivisions $B_{i j k}$ of B :

$$
B_{i j k}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right] \times\left[z_{k-1}, z_{k}\right] .
$$

We choose sample points $P_{i j k}^{*} \in B_{i j k}$ and form the Riemann sum

$$
\sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(P_{i j k}^{*}\right) \Delta V_{i j k}
$$

where

$$
\Delta V_{i j k}=\text { Volume of } B_{i j k}=\Delta x_{i} \Delta y_{j} \Delta z_{k}
$$

Finally we take the limit as the subdivisions shrink indefinitely:

$$
\lim _{\Delta x, \Delta y, \Delta z \rightarrow 0} \sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(P_{i j k}^{*}\right) \Delta V_{i j k}=\iiint_{B} f(x, y, z) d V .
$$

We say that f is integrable when this limit exists (and is independent of the choices involved).

Interpreting the Triple Integral

Unfortunately $\iiint_{B} f d V$ does not have a "generic" geometric meaning.

The terms $f\left(P_{i j k}^{*}\right) \Delta V_{i j k}$ in the Riemann sum represent 4-dimensional "content," which cannot be visualized.

However, if f represents the pointwise density throughout B, then:

- $f\left(P_{i j k}^{*}\right) \Delta V_{i j k}$ is the approximate mass of $B_{i j k}$.
- $\iiint_{B} f d V$ is the total mass of B.

If the subdivisions of B are uniform, then

$$
\Delta V_{i j k}=\Delta V=\frac{\text { Volume of } \mathrm{B}}{\ell m n} \Rightarrow \frac{1}{\ell m n}=\frac{\Delta V}{V(B)}
$$

and the average value of f at the sample points $P_{i j k}^{*}$ is

$$
\frac{1}{\ell m n} \sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(P_{i j k}^{*}\right)=\frac{1}{V(B)} \sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(P_{i j k}^{*}\right) \Delta V .
$$

Taking the limit as $\Delta x, \Delta y, \Delta z \rightarrow 0$ we sample f "everywhere" and find

$$
\text { Average value of } f \text { on } B=\bar{f}=\frac{1}{V(B)} \iiint_{B} f d V
$$

This provides another interpretation of the triple integral.

Fubini's Theorem

As with double integrals, we can use a cross section argument to show that triple integrals can be evaluated using iterated single variable integrals.

Theorem 1

If f is integrable on $B=[a, b] \times[c, d] \times[r, s]$, then

$$
\begin{aligned}
\iiint_{B} f(x, y, z) d V & =\int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x, y, z) d x d y d z \\
& =\int_{a}^{b} \int_{r}^{s} \int_{c}^{d} f(x, y, z) d y d z d x=\cdots
\end{aligned}
$$

(There are six possible orders.)

Example 1

Evaluate $\iiint_{B} x z-y^{3} d V$, where $B=[-1,1] \times[0,2] \times[0,1]$.

Solution. There is no particularly advantageous order of integration, so we simply choose

$$
\begin{array}{rl}
\iiint_{B} x z-y^{3} & d V=\int_{-1}^{1} \int_{0}^{2} \int_{0}^{1} x z-y^{3} d z d y d x \\
& =\int_{-1}^{1} \int_{0}^{2} \frac{x z^{2}}{2}-\left.y^{3} z\right|_{z=0} ^{z=1} d y d x \\
& =\int_{-1}^{1} \int_{0}^{2} \frac{x}{2}-y^{3} d y d x=\int_{-1}^{1} \frac{x y}{2}-\left.\frac{y^{4}}{4}\right|_{y=0} ^{y=2} d x
\end{array}
$$

$$
=\int_{-1}^{1} x-4 d x=\frac{x^{2}}{2}-\left.4 x\right|_{-1} ^{1}=--8 .
$$

Remarks.

- This result tells us that $x z-y^{3}$ is predominantly negative throughout B.
- More precisely, the average value of $x z-y^{3}$ in B is

$$
\frac{1}{V(B)} \iiint_{B} x z-y^{3} d V=\frac{1}{2 \cdot 2 \cdot 1}(-8)=-2
$$

Triple Integrals Over General Regions

To integrate over a general solid region, we first divide it into subregions that can be described by iterated inequalities.

We can use a cross section argument to express these subintegrals as 3 -variable iterated integrals.

We then appeal to the additivity of the integral: if E_{1} and E_{2} are solids only sharing boundary points, then

$$
\iiint_{E_{1} \cup E_{2}} f d V=\iiint_{E_{1}} f d V+\iiint_{E_{2}} f d V
$$

Definition

We say that $E \subset \mathbb{R}^{3}$ is of Type 1 if it has the form

$$
E=\left\{(x, y, z) \mid(x, y) \in D, u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\}
$$

where $D \subset \mathbb{R}^{2}$ is the projection of E into the xy-plane. In this case

$$
\iiint_{E} f(x, y, z) d V=\iint_{D} \int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z d A
$$

where $d A=d x d y=d y d x$.

A Type 1 region has a "bottom" surface given by $z=u_{1}(x, y)$, and a "top" surface given by $z=u_{2}(x, y)$, both with domain D in the $x y$-plane (see Maple diagram).

Definition

We say that $E \subset \mathbb{R}^{3}$ is of Type 2 if it has the form

$$
E=\left\{(x, y, z) \mid(y, z) \in D, u_{1}(y, z) \leq x \leq u_{2}(y, z)\right\}
$$

where $D \subset \mathbb{R}^{2}$ is the projection of E into the $y z$-plane. In this case

$$
\iiint_{E} f(x, y, z) d V=\iint_{D} \int_{u_{1}(y, z)}^{u_{2}(y, z)} f(x, y, z) d x d A
$$

where $d A=d y d z=d z d y$.

A Type 2 region has a "back" surface given by $x=u_{1}(y, z)$, and a "front" surface given by $x=u_{2}(y, z)$, both with domain D in the $y z$-plane (see Maple diagram).

Definition

We say that $E \subset \mathbb{R}^{3}$ is of Type 3 if it has the form

$$
E=\left\{(x, y, z) \mid(x, z) \in D, u_{1}(x, z) \leq y \leq u_{2}(x, z)\right\}
$$

where $D \subset \mathbb{R}^{2}$ is the projection of E into the xz-plane. In this case

$$
\iiint_{E} f(x, y, z) d V=\iint_{D} \int_{u_{1}(x, z)}^{u_{2}(x, z)} f(x, y, z) d y d A
$$

where $d A=d x d z=d z d x$.

A Type 3 region has a "left" surface given by $y=u_{1}(x, z)$, and a "right" surface given by $y=u_{2}(x, z)$, both with domain D in the $x z$-plane (see Maple diagram).

Remarks

Fubini's Theorem still holds for general regions: if E is of multiple types, $\iiint_{E} f d V$ can be computed using any order of integration.

A triple integral $\iiint_{E} f d V$ can be very difficult to set up.

- One first needs to identify the type of E and the relevant "sides" to determine the innermost variable and limits of integration.
- Then one needs to project E into the plane of the remaining variables and set up a double integral over that region.

When $f \equiv 1$, the terms in the Riemann sums are simply volumes, so that $\iiint_{E} d V=$ Volume of E.

Examples

Example 2

Compute $\iiint_{E_{2}} z d V$ where E is the solid region bounded by $z=1-x^{2}-y^{2}$ and $z=-3$.

Solution. The paraboloid $z=1-x^{2}-y^{2}$ lies above $z=-3$ where

$$
1-x^{2}-y^{2} \geq-3 \Leftrightarrow x^{2}+y^{2} \leq 4
$$

So E is a Type 1 region with "bottom" $z=-3$, "top" $z=1-x^{2}-y^{2}$ and $x y$-projection

$$
D=\left\{(x, y) \mid x^{2}+y^{2} \leq 4\right\}
$$

See Maple diagram.

Thus

$$
\iiint_{E} z d V=\iint_{D} \int_{-3}^{1-x^{2}-y^{2}} z d z d A
$$

Because the outer integral is over a disk centered at the origin, we can easily describe it using polar coordinates:

$$
\begin{aligned}
& \iint_{D} \int_{-3}^{1-x^{2}-y^{2}} z d z d A=\int_{0}^{2 \pi} \int_{0}^{2} \int_{-3}^{1-r^{2}} z r d z d r d \theta \\
& \quad=\left.\int_{0}^{2 \pi} \int_{0}^{2} \frac{r z^{2}}{2}\right|_{z=-3} ^{z=1-r^{2}} d r d \theta=\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{2} r\left(1-r^{2}\right)^{2}-9 r d r d \theta \\
& \quad=\frac{1}{2} \int_{0}^{2 \pi} \frac{\left(1-r^{2}\right)^{3}}{-6}-\left.\frac{9 r^{2}}{2}\right|_{r=0} ^{r=2} d \theta=\pi\left(\frac{9}{2}-18+\frac{1}{6}\right)=\frac{-40 \pi}{3} .
\end{aligned}
$$

Example 3

Find the volume of the region E enclosed by the parabolic cylinder $z=3-y^{2}$ and the planes $z=0, x+y+z=5$ and $x-y=-7$.

Solution. The plane $z=0$ cuts the cylinder $z=3-y^{2}$ into a "parabolic tube" along the x-axis.

The planes $x+y+z=5$ and $x-y=-7$ intersect the x-axis at $x=5$ and $x=-7$, respectively.

Therefore $x=5-y-z$ forms the "front" of E, while $x=y-7$ forms the "back."

Thus E is a Type 2 region. See Maple diagram.

The projection of E into the $y z$-plane is the parabolic region D bounded by $z=0$ and $z=3-y^{2}$, which is of Type I.

Thus

$$
\begin{aligned}
& \text { Volume }(E)=\iiint_{E} d V=\iint_{D} \int_{y-7}^{5-y-z} d x d A \\
& =\int_{-\sqrt{3}}^{\sqrt{3}} \int_{0}^{3-y^{2}} \int_{y-7}^{5-y-z} d x d z d y=\int_{-\sqrt{3}}^{\sqrt{3}} \int_{0}^{3-y^{2}} 12-2 y-z d z d y \\
& =\int_{-\sqrt{3}}^{\sqrt{3}}(12-2 y) z-\left.\frac{z^{2}}{2}\right|_{z=0} ^{z=3-y^{2}} d y \\
& =\int_{-\sqrt{3}}^{\sqrt{3}}(12-2 y)\left(3-y^{2}\right)-\frac{\left(3-y^{2}\right)^{2}}{2} d y
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-\sqrt{3}}^{\sqrt{3}} \frac{-y^{4}}{2}+2 y^{3}-9 y^{2}-6 y+\frac{63}{2} d y \\
& =2 \int_{0}^{\sqrt{3}}-\frac{y^{4}}{2}-9 y^{2}+\frac{63}{2} d y=\int_{0}^{\sqrt{3}}-y^{4}-18 y^{2}+63 d y \\
& =\frac{-y^{5}}{5}-6 y^{3}+\left.63 y\right|_{0} ^{\sqrt{3}}=\frac{-9 \sqrt{3}}{5}-18 \sqrt{3}+63 \sqrt{3} \\
& =\frac{216}{5} \sqrt{3} .
\end{aligned}
$$

Example 4

Rewrite the integral $\int_{0}^{1} \int_{\sqrt{x}}^{1} \int_{0}^{1-y} f(x, y, z) d z d y d x$ in all five other orders of integration.

Solution. The given iterated integral represents an integral over a Type 1 region $E \subset \mathbb{R}^{3}$ bounded above by the plane $z=1-y$ and below by the plane $z=0$.

The $x y$-projection D of E is a Type I region bounded on the bottom by the parabola $y=\sqrt{x}\left(x=y^{2}\right)$ and on the top by the horizontal line $y=1$, running from $x=0$ to $x=1$.

As a Type II region, D is bounded on the left by $x=0$ and on the right by $x=y^{2}$, with $0 \leq y \leq 1$.

Thus

$$
\iiint_{E} f(x, y, z) d V=\int_{0}^{1} \int_{0}^{y^{2}} \int_{0}^{1-y} f(x, y, z) d z d x d y
$$

As a Type 2 region, the "back" of E is $x=0$, while the "front" is $x=y^{2}$.

The $y z$-projection of E is a triangle in the first quadrant. Thus

$$
\begin{aligned}
\iiint_{E} f(x, y, z) d V & =\int_{0}^{1} \int_{0}^{1-y} \int_{0}^{y^{2}} f(x, y, z) d x d z d y \\
& =\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{y^{2}} f(x, y, z) d x d y d z
\end{aligned}
$$

As a Type 3 region, the "left side" of E is $y=\sqrt{x}$, while the "right side" is $y=1-z$.

The $x z$-projection of E is bounded by $x=y^{2}=(1-z)^{2}$. Thus

$$
\begin{aligned}
\iiint_{E} f(x, y, z) d V & =\int_{0}^{1} \int_{0}^{1-\sqrt{x}} \int_{\sqrt{x}}^{1-z} f(x, y, z) d y d z d x \\
& =\int_{0}^{1} \int_{0}^{(1-z)^{2}} \int_{\sqrt{x}}^{1-z} f(x, y, z) d y d x d z
\end{aligned}
$$

